Excellent ring

Last updated

In commutative algebra, a quasi-excellent ring is a Noetherian commutative ring that behaves well with respect to the operation of completion, and is called an excellent ring if it is also universally catenary. Excellent rings are one answer to the problem of finding a natural class of "well-behaved" rings containing most of the rings that occur in number theory and algebraic geometry. At one time it seemed that the class of Noetherian rings might be an answer to this problem, but Masayoshi Nagata and others found several strange counterexamples showing that in general Noetherian rings need not be well-behaved: for example, a normal Noetherian local ring need not be analytically normal.

Contents

The class of excellent rings was defined by Alexander Grothendieck (1965) as a candidate for such a class of well-behaved rings. Quasi-excellent rings are conjectured to be the base rings for which the problem of resolution of singularities can be solved; Hironaka (1964) showed this in characteristic 0, but the positive characteristic case is (as of 2016) still a major open problem. Essentially all Noetherian rings that occur naturally in algebraic geometry or number theory are excellent; in fact it is quite hard to construct examples of Noetherian rings that are not excellent.

Definitions

The definition of excellent rings is quite involved, so we recall the definitions of the technical conditions it satisfies. Although it seems like a long list of conditions, most rings in practice are excellent, such as fields, polynomial rings, complete Noetherian rings, Dedekind domains over characteristic 0 (such as ), and quotient and localization rings of these rings.

Recalled definitions

Finally, a ring is J-2 [2] if any finite type -algebra is J-1, meaning the regular subscheme is open.

Definition of (quasi-)excellence

A ring is called quasi-excellent if it is a G-ring and J-2 ring. It is called excellent [3] pg 214 if it is quasi-excellent and universally catenary. In practice almost all Noetherian rings are universally catenary, so there is little difference between excellent and quasi-excellent rings.

A scheme is called excellent or quasi-excellent if it has a cover by open affine subschemes with the same property, which implies that every open affine subscheme has this property.

Properties

Because an excellent ring is a G-ring, [1] it is Noetherian by definition. Because it is universally catenary, every maximal chain of prime ideals has the same length. This is useful for studying the dimension theory of such rings because their dimension can be bounded by a fixed maximal chain. In practice, this means infinite-dimensional Noetherian rings [4] which have an inductive definition of maximal chains of prime ideals, giving an infinite-dimensional ring, cannot be constructed.

Schemes

Given an excellent scheme and a locally finite type morphism , then is excellent [3] pg 217.

Quasi-excellence

Any quasi-excellent ring is a Nagata ring.

Any quasi-excellent reduced local ring is analytically reduced.

Any quasi-excellent normal local ring is analytically normal.

Examples

Excellent rings

Most naturally occurring commutative rings in number theory or algebraic geometry are excellent. In particular:

A J-2 ring that is not a G-ring

Here is an example of a discrete valuation ring A of dimension 1 and characteristic p> 0 which is J-2 but not a G-ring and so is not quasi-excellent. If k is any field of characteristic p with [k : kp] = ∞ and A is the ring of power series Σaixi such that [kp(a0, a1, ...) : kp] is finite then the formal fibers of A are not all geometrically regular so A is not a G-ring. It is a J-2 ring as all Noetherian local rings of dimension at most 1 are J-2 rings. It is also universally catenary as it is a Dedekind domain. Here kp denotes the image of k under the Frobenius morphism aap.

A G-ring that is not a J-2 ring

Here is an example of a ring that is a G-ring but not a J-2 ring and so not quasi-excellent. If R is the subring of the polynomial ring k[x1,x2,...] in infinitely many generators generated by the squares and cubes of all generators, and S is obtained from R by adjoining inverses to all elements not in any of the ideals generated by some xn, then S is a 1-dimensional Noetherian domain that is not a J-1 ring as S has a cusp singularity at every closed point, so the set of singular points is not closed, though it is a G-ring. This ring is also universally catenary, as its localization at every prime ideal is a quotient of a regular ring.

A quasi-excellent ring that is not excellent

Nagata's example of a 2-dimensional Noetherian local ring that is catenary but not universally catenary is a G-ring, and is also a J-2 ring as any local G-ring is a J-2 ring ( Matsumura 1980 , p.88, 260). So it is a quasi-excellent catenary local ring that is not excellent.

Resolution of singularities

Quasi-excellent rings are closely related to the problem of resolution of singularities, and this seems to have been Grothendieck's motivation [3] pg 218 for defining them. Grothendieck (1965) observed that if it is possible to resolve singularities of all complete integral local Noetherian rings, then it is possible to resolve the singularities of all reduced quasi-excellent rings. Hironaka (1964) proved this for all complete integral Noetherian local rings over a field of characteristic 0, which implies his theorem that all singularities of excellent schemes over a field of characteristic 0 can be resolved. Conversely if it is possible to resolve all singularities of the spectra of all integral finite algebras over a Noetherian ring R then the ring R is quasi-excellent.

See also

Related Research Articles

In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.

In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence of left ideals has a largest element; that is, there exists an n such that:

<span class="mw-page-title-main">Commutative algebra</span> Branch of algebra that studies commutative rings

Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers.

<span class="mw-page-title-main">Ring theory</span> Branch of algebra

In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In algebra, a flat module over a ring R is an R-module M such that taking the tensor product over R with M preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact.

In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a finitely generated free module over a regular local subring. Cohen–Macaulay rings play a central role in commutative algebra: they form a very broad class, and yet they are well understood in many ways.

In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be a Noetherian local ring with maximal ideal m, and suppose a1, ..., an is a minimal set of generators of m. Then by Krull's principal ideal theorem n ≥ dim A, and A is defined to be regular if n = dim A.

In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces.

In mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory.

In algebraic geometry, a noetherian scheme is a scheme that admits a finite covering by open affine subsets , noetherian rings. More generally, a scheme is locally noetherian if it is covered by spectra of noetherian rings. Thus, a scheme is noetherian if and only if it is locally noetherian and quasi-compact. As with noetherian rings, the concept is named after Emmy Noether.

In commutative algebra, an element b of a commutative ring B is said to be integral overA, a subring of B, if there are n ≥ 1 and aj in A such that

In mathematics, a commutative ring R is catenary if for any pair of prime ideals p, q, any two strictly increasing chains

In commutative algebra, an N-1 ring is an integral domain whose integral closure in its quotient field is a finitely generated -module. It is called a Japanese ring if for every finite extension of its quotient field , the integral closure of in is a finitely generated -module. A ring is called universally Japanese if every finitely generated integral domain over it is Japanese, and is called a Nagata ring, named for Masayoshi Nagata, or a pseudo-geometric ring if it is Noetherian and universally Japanese. A ring is called geometric if it is the local ring of an algebraic variety or a completion of such a local ring, but this concept is not used much.

In commutative algebra, a G-ring or Grothendieck ring is a Noetherian ring such that the map of any of its local rings to the completion is regular. Almost all Noetherian rings that occur naturally in algebraic geometry or number theory are G-rings, and it is quite hard to construct examples of Noetherian rings that are not G-rings. The concept is named after Alexander Grothendieck.

In commutative algebra, an integrally closed domainA is an integral domain whose integral closure in its field of fractions is A itself. Spelled out, this means that if x is an element of the field of fractions of A which is a root of a monic polynomial with coefficients in A, then x is itself an element of A. Many well-studied domains are integrally closed: fields, the ring of integers Z, unique factorization domains and regular local rings are all integrally closed.

In algebraic geometry, the h topology is a Grothendieck topology introduced by Vladimir Voevodsky to study the homology of schemes. It combines several good properties possessed by its related "sub"topologies, such as the qfh and cdh topologies. It has subsequently been used by Beilinson to study p-adic Hodge theory, in Bhatt and Scholze's work on projectivity of the affine Grassmanian, Huber and Jörder's study of differential forms, etc.

This is a glossary of algebraic geometry.

This is a glossary of commutative algebra.

In commutative algebra, a J-0 ring is a ring such that the set of regular points, that is, points of the spectrum at which the localization is a regular local ring, contains a non-empty open subset, a J-1 ring is a ring such that the set of regular points is an open subset, and a J-2 ring is a ring such that any finitely generated algebra over the ring is a J-1 ring.

References

  1. 1 2 "Section 15.49 (07GG): G-rings—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-07-24.
  2. "Section 15.46 (07P6): The singular locus—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-07-24.
  3. 1 2 3 Grothendieck, Alexander (1965). "Éléments de géométrie algébrique : IV. Étude locale des schémas et des morphismes de schémas, Seconde partie". Publications Mathématiques de l'IHÉS. 24: 5–231.
  4. "Section 108.14 (02JC): A Noetherian ring of infinite dimension—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-07-24.