Exotic sphere

Last updated

In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one (hence the name "exotic").

Contents

The first exotic spheres were constructed by JohnMilnor  ( 1956 ) in dimension as -bundles over . He showed that there are at least 7 differentiable structures on the 7-sphere. In any dimension Milnor (1959) showed that the diffeomorphism classes of oriented exotic spheres form the non-trivial elements of an abelian monoid under connected sum, which is a finite abelian group if the dimension is not 4. The classification of exotic spheres by MichelKervaire andMilnor ( 1963 ) showed that the oriented exotic 7-spheres are the non-trivial elements of a cyclic group of order 28 under the operation of connected sum.

More generally, in any dimension n ≠ 4, there is a finite Abelian group whose elements are the equivalence classes of smooth structures on Sn, where two structures are considered equivalent if there is an orientation preserving diffeomorphism carrying one structure onto the other. The group operation is defined by [x] + [y] = [x + y], where x and y are arbitrary representatives of their equivalence classes, and x + y denotes the smooth structure on the smooth Sn that is the connected sum of x and y. It is necessary to show that such a definition does not depend on the choices made; indeed this can be shown.

Introduction

The unit n-sphere, , is the set of all (n+1)-tuples of real numbers, such that the sum . For instance, is a circle, while is the surface of an ordinary ball of radius one in 3 dimensions. Topologists consider a space X to be an n-sphere if there is a homeomorphism between them, i.e. every point in X may be assigned to exactly one point in the unit n-sphere by a continuous bijection with continuous inverse. For example, a point x on an n-sphere of radius r can be matched homeomorphically with a point on the unit n-sphere by multiplying its distance from the origin by . Similarly, an n-cube of any radius is homeomorphic to an n-sphere.

In differential topology, two smooth manifolds are considered smoothly equivalent if there exists a diffeomorphism from one to the other, which is a homeomorphism between them, with the additional condition that it be smooth — that is, it should have derivatives of all orders at all its points — and its inverse homeomorphism must also be smooth. To calculate derivatives, one needs to have local coordinate systems defined consistently in X. Mathematicians (including Milnor himself) were surprised in 1956 when Milnor showed that consistent local coordinate systems could be set up on the 7-sphere in two different ways that were equivalent in the continuous sense, but not in the differentiable sense. Milnor and others set about trying to discover how many such exotic spheres could exist in each dimension and to understand how they relate to each other. No exotic structures are possible on the 1-, 2-, 3-, 5-, 6-, 12-, 56- or 61-sphere. [1] Some higher-dimensional spheres have only two possible differentiable structures, others have thousands. Whether exotic 4-spheres exist, and if so how many, is an unsolved problem.

Classification

The monoid of smooth structures on n-spheres is the collection of oriented smooth n-manifolds which are homeomorphic to the n-sphere, taken up to orientation-preserving diffeomorphism. The monoid operation is the connected sum. Provided , this monoid is a group and is isomorphic to the group of h-cobordism classes of oriented homotopy n-spheres, which is finite and abelian. In dimension 4 almost nothing is known about the monoid of smooth spheres, beyond the facts that it is finite or countably infinite, and abelian, though it is suspected to be infinite; see the section on Gluck twists. All homotopy n-spheres are homeomorphic to the n-sphere by the generalized Poincaré conjecture, proved by Stephen Smale in dimensions bigger than 4, Michael Freedman in dimension 4, and Grigori Perelman in dimension 3. In dimension 3, Edwin E. Moise proved that every topological manifold has an essentially unique smooth structure (see Moise's theorem), so the monoid of smooth structures on the 3-sphere is trivial.

Parallelizable manifolds

The group has a cyclic subgroup

represented by n-spheres that bound parallelizable manifolds. The structures of and the quotient

are described separately in the paper ( Kervaire & Milnor   1963 ), which was influential in the development of surgery theory. In fact, these calculations can be formulated in a modern language in terms of the surgery exact sequence as indicated here.

The group is a cyclic group, and is trivial or order 2 except in case , in which case it can be large, with its order related to the Bernoulli numbers. It is trivial if n is even. If n is 1 mod 4 it has order 1 or 2; in particular it has order 1 if n is 1, 5, 13, 29, or 61, and WilliamBrowder  ( 1969 ) proved that it has order 2 if mod 4 is not of the form . It follows from the now almost completely resolved Kervaire invariant problem that it has order 2 for all n bigger than 126; the case is still open. The order of for is

where B is the numerator of , and is a Bernoulli number. (The formula in the topological literature differs slightly because topologists use a different convention for naming Bernoulli numbers; this article uses the number theorists' convention.)

Map between quotients

The quotient group has a description in terms of stable homotopy groups of spheres modulo the image of the J-homomorphism; it is either equal to the quotient or index 2. More precisely there is an injective map

where is the nth stable homotopy group of spheres, and J is the image of the J-homomorphism. As with , the image of J is a cyclic group, and is trivial or order 2 except in case , in which case it can be large, with its order related to the Bernoulli numbers. The quotient group is the "hard" part of the stable homotopy groups of spheres, and accordingly is the hard part of the exotic spheres, but almost completely reduces to computing homotopy groups of spheres. The map is either an isomorphism (the image is the whole group), or an injective map with index 2. The latter is the case if and only if there exists an n-dimensional framed manifold with Kervaire invariant 1, which is known as the Kervaire invariant problem. Thus a factor of 2 in the classification of exotic spheres depends on the Kervaire invariant problem.

As of 2012, the Kervaire invariant problem is almost completely solved, with only the case remaining open; see that article for details. This is primarily the work of Browder (1969), which proved that such manifolds only existed in dimension , and Hill, Hopkins & Ravenel (2016), which proved that there were no such manifolds for dimension and above. Manifolds with Kervaire invariant 1 have been constructed in dimension 2, 6, 14, 30, and 62, but dimension 126 is open, with no manifold being either constructed or disproven.

Order of Θn

The order of the group is given in this table (sequence A001676 in the OEIS ) from ( Kervaire & Milnor 1963 ) (except that the entry for is wrong by a factor of 2 in their paper; see the correction in volume III p. 97 of Milnor's collected works).

Dim n1234567891011121314151617181920
order 11111128286992132162562161652326424
1111112812199211181281212616321
111111122×261132222×2×28×2224
121112122×261132×2222×2×28×2224
index222

Note that for dim , then are , , , and . Further entries in this table can be computed from the information above together with the table of stable homotopy groups of spheres.

By computations of stable homotopy groups of spheres, Wang & Xu (2017) proves that the sphere S61 has a unique smooth structure, and that it is the last odd-dimensional sphere with this property – the only ones are S1, S3, S5, and S61.

Explicit examples of exotic spheres

When I came upon such an example in the mid-50s, I was very puzzled and didn't know what to make of it. At first, I thought I'd found a counterexample to the generalized Poincaré conjecture in dimension seven. But careful study showed that the manifold really was homeomorphic to . Thus, there exists a differentiable structure on not diffeomorphic to the standard one.

JohnMilnor (2009,p.12)

Milnor's construction

One of the first examples of an exotic sphere found by Milnor (1956 , section 3) was the following. Let be the unit ball in , and let be its boundary—a 3-sphere which we identify with the group of unit quaternions. Now take two copies of , each with boundary , and glue them together by identifying in the first boundary with in the second boundary. The resulting manifold has a natural smooth structure and is homeomorphic to , but is not diffeomorphic to . Milnor showed that it is not the boundary of any smooth 8-manifold with vanishing 4th Betti number, and has no orientation-reversing diffeomorphism to itself; either of these properties implies that it is not a standard 7-sphere. Milnor showed that this manifold has a Morse function with just two critical points, both non-degenerate, which implies that it is topologically a sphere.

Brieskorn spheres

As shown by EgbertBrieskorn  ( 1966 , 1966b ) (see also ( Hirzebruch & Mayer 1968 )) the intersection of the complex manifold of points in satisfying

with a small sphere around the origin for gives all 28 possible smooth structures on the oriented 7-sphere. Similar manifolds are called Brieskorn spheres.

Twisted spheres

Given an (orientation-preserving) diffeomorphism , gluing the boundaries of two copies of the standard disk together by f yields a manifold called a twisted sphere (with twistf). It is homotopy equivalent to the standard n-sphere because the gluing map is homotopic to the identity (being an orientation-preserving diffeomorphism, hence degree 1), but not in general diffeomorphic to the standard sphere. ( Milnor 1959b ) Setting to be the group of twisted n-spheres (under connect sum), one obtains the exact sequence

For , every exotic n-sphere is diffeomorphic to a twisted sphere, a result proven by Stephen Smale which can be seen as a consequence of the h-cobordism theorem. (In contrast, in the piecewise linear setting the left-most map is onto via radial extension: every piecewise-linear-twisted sphere is standard.) The group of twisted spheres is always isomorphic to the group . The notations are different because it was not known at first that they were the same for or 4; for example, the case is equivalent to the Poincaré conjecture.

In 1970 Jean Cerf proved the pseudoisotopy theorem which implies that is the trivial group provided , and so provided .

Applications

If M is a piecewise linear manifold then the problem of finding the compatible smooth structures on M depends on knowledge of the groups Γk = Θk. More precisely, the obstructions to the existence of any smooth structure lie in the groups Hk+1(M, Γk) for various values of k, while if such a smooth structure exists then all such smooth structures can be classified using the groups Hk(M, Γk). In particular the groups Γk vanish if k< 7, so all PL manifolds of dimension at most 7 have a smooth structure, which is essentially unique if the manifold has dimension at most 6.

The following finite abelian groups are essentially the same:

4-dimensional exotic spheres and Gluck twists

In 4 dimensions it is not known whether there are any exotic smooth structures on the 4-sphere. The statement that they do not exist is known as the "smooth Poincaré conjecture", and is discussed by MichaelFreedman , Robert Gompf ,andScott Morrisonet al. ( 2010 ) who say that it is believed to be false.

Some candidates proposed for exotic 4-spheres are the Cappell–Shaneson spheres (SylvainCappell and Julius Shaneson  ( 1976 )) and those derived by Gluck twists( Gluck 1962 ). Gluck twist spheres are constructed by cutting out a tubular neighborhood of a 2-sphere S in S4 and gluing it back in using a diffeomorphism of its boundary S2×S1. The result is always homeomorphic to S4. Many cases over the years were ruled out as possible counterexamples to the smooth 4 dimensional Poincaré conjecture. For example, CameronGordon  ( 1976 ), JoséMontesinos ( 1983 ), Steven P.Plotnick ( 1984 ), Gompf (1991), Habiro, Marumoto & Yamada (2000), SelmanAkbulut  ( 2010 ), Gompf (2010), Kim & Yamada (2017).

See also

Related Research Articles

<span class="mw-page-title-main">Differential topology</span> Branch of mathematics

In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape. By comparison differential topology is concerned with coarser properties, such as the number of holes in a manifold, its homotopy type, or the structure of its diffeomorphism group. Because many of these coarser properties may be captured algebraically, differential topology has strong links to algebraic topology.

<span class="mw-page-title-main">Diffeomorphism</span> Isomorphism of differentiable manifolds

In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable.

<span class="mw-page-title-main">Connected sum</span> Way to join two given mathematical manifolds together

In mathematics, specifically in topology, the operation of connected sum is a geometric modification on manifolds. Its effect is to join two given manifolds together near a chosen point on each. This construction plays a key role in the classification of closed surfaces.

<span class="mw-page-title-main">Geometric topology</span> Branch of mathematics studying (smooth) functions of manifolds

In mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another.

<span class="mw-page-title-main">Low-dimensional topology</span> Branch of topology

In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.

In mathematics, an n-dimensional differential structure on a set M makes M into an n-dimensional differential manifold, which is a topological manifold with some additional structure that allows for differential calculus on the manifold. If M is already a topological manifold, it is required that the new topology be identical to the existing one.

<span class="mw-page-title-main">Homotopy groups of spheres</span> How spheres of various dimensions can wrap around each other

In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure of spheres viewed as topological spaces, forgetting about their precise geometry. Unlike homology groups, which are also topological invariants, the homotopy groups are surprisingly complex and difficult to compute.

In mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique.

<span class="mw-page-title-main">Manifold</span> Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.

In mathematics, a differentiable manifold of dimension n is called parallelizable if there exist smooth vector fields

<span class="mw-page-title-main">Selman Akbulut</span> Turkish mathematician

Selman Akbulut is a Turkish mathematician, specializing in research in topology, and geometry. He was a professor at Michigan State University until February 2020.

In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by John Milnor. Milnor called this technique surgery, while Andrew Wallace called it spherical modification. The "surgery" on a differentiable manifold M of dimension , could be described as removing an imbedded sphere of dimension p from M. Originally developed for differentiable manifolds, surgery techniques also apply to piecewise linear (PL-) and topological manifolds.

In 4-dimensional topology, a branch of mathematics, Rokhlin's theorem states that if a smooth, orientable, closed 4-manifold M has a spin structure, then the signature of its intersection form, a quadratic form on the second cohomology group , is divisible by 16. The theorem is named for Vladimir Rokhlin, who proved it in 1952.

In mathematics, specifically geometric topology, the Borel conjecture asserts that an aspherical closed manifold is determined by its fundamental group, up to homeomorphism. It is a rigidity conjecture, asserting that a weak, algebraic notion of equivalence should imply a stronger, topological notion.

In the mathematical area of topology, the generalized Poincaré conjecture is a statement that a manifold which is a homotopy sphere is a sphere. More precisely, one fixes a category of manifolds: topological (Top), piecewise linear (PL), or differentiable (Diff). Then the statement is

Michel André Kervaire was a French mathematician who made significant contributions to topology and algebra.

In mathematics, the Kervaire invariant is an invariant of a framed -dimensional manifold that measures whether the manifold could be surgically converted into a sphere. This invariant evaluates to 0 if the manifold can be converted to a sphere, and 1 otherwise. This invariant was named after Michel Kervaire who built on work of Cahit Arf.

In mathematics, specifically geometry and topology, the classification of manifolds is a basic question, about which much is known, and many open questions remain.

In differential topology, a branch of mathematics, a Mazur manifold is a contractible, compact, smooth four-dimensional manifold-with-boundary which is not diffeomorphic to the standard 4-ball. Usually these manifolds are further required to have a handle decomposition with a single -handle, and a single -handle; otherwise, they would simply be called contractible manifolds. The boundary of a Mazur manifold is necessarily a homology 3-sphere.

In mathematics, the surgery structure set is the basic object in the study of manifolds which are homotopy equivalent to a closed manifold X. It is a concept which helps to answer the question whether two homotopy equivalent manifolds are diffeomorphic. There are different versions of the structure set depending on the category and whether Whitehead torsion is taken into account or not.

References

  1. Behrens, M.; Hill, M.; Hopkins, M. J.; Mahowald, M. (2020). "Detecting exotic spheres in low dimensions using coker J". Journal of the London Mathematical Society. 101 (3): 1173–1218. arXiv: 1708.06854 . doi:10.1112/jlms.12301. ISSN   1469-7750. S2CID   119170255.