Kervaire invariant

Last updated

In mathematics, the Kervaire invariant is an invariant of a framed -dimensional manifold that measures whether the manifold could be surgically converted into a sphere. This invariant evaluates to 0 if the manifold can be converted to a sphere, and 1 otherwise. This invariant was named after Michel Kervaire who built on work of Cahit Arf.

Contents

The Kervaire invariant is defined as the Arf invariant of the skew-quadratic form on the middle dimensional homology group. It can be thought of as the simply-connected quadratic L-group , and thus analogous to the other invariants from L-theory: the signature, a -dimensional invariant (either symmetric or quadratic, ), and the De Rham invariant, a -dimensional symmetric invariant .

In any given dimension, there are only two possibilities: either all manifolds have Arf–Kervaire invariant equal to 0, or half have Arf–Kervaire invariant 0 and the other half have Arf–Kervaire invariant 1.

The Kervaire invariant problem is the problem of determining in which dimensions the Kervaire invariant can be nonzero. For differentiable manifolds, this can happen in dimensions 2, 6, 14, 30, 62, and possibly 126, and in no other dimensions. The final case of dimension 126 remains open.

Definition

The Kervaire invariant is the Arf invariant of the quadratic form determined by the framing on the middle-dimensional -coefficient homology group

and is thus sometimes called the Arf–Kervaire invariant. The quadratic form (properly, skew-quadratic form) is a quadratic refinement of the usual ε-symmetric form on the middle dimensional homology of an (unframed) even-dimensional manifold; the framing yields the quadratic refinement.

The quadratic form q can be defined by algebraic topology using functional Steenrod squares, and geometrically via the self-intersections of immersions determined by the framing, or by the triviality/non-triviality of the normal bundles of embeddings (for ) and the mod 2 Hopf invariant of maps (for ).

History

The Kervaire invariant is a generalization of the Arf invariant of a framed surface (that is, a 2-dimensional manifold with stably trivialized tangent bundle) which was used by Lev Pontryagin in 1950 to compute the homotopy group of maps (for ), which is the cobordism group of surfaces embedded in with trivialized normal bundle.

Kervaire (1960) used his invariant for n = 10 to construct the Kervaire manifold, a 10-dimensional PL manifold with no differentiable structure, the first example of such a manifold, by showing that his invariant does not vanish on this PL manifold, but vanishes on all smooth manifolds of dimension 10.

Kervaire & Milnor (1963) computes the group of exotic spheres (in dimension greater than 4), with one step in the computation depending on the Kervaire invariant problem. Specifically, they show that the set of exotic spheres of dimension n – specifically the monoid of smooth structures on the standard n-sphere – is isomorphic to the group of h-cobordism classes of oriented homotopy n-spheres. They compute this latter in terms of a map

where is the cyclic subgroup of n-spheres that bound a parallelizable manifold of dimension , is the nth stable homotopy group of spheres, and J is the image of the J-homomorphism, which is also a cyclic group. The groups and have easily understood cyclic factors, which are trivial or order two except in dimension , in which case they are large, with order related to the Bernoulli numbers. The quotients are the difficult parts of the groups. The map between these quotient groups is either an isomorphism or is injective and has an image of index 2. It is the latter if and only if there is an n-dimensional framed manifold of nonzero Kervaire invariant, and thus the classification of exotic spheres depends up to a factor of 2 on the Kervaire invariant problem.

Examples

For the standard embedded torus, the skew-symmetric form is given by (with respect to the standard symplectic basis), and the skew-quadratic refinement is given by with respect to this basis: : the basis curves don't self-link; and : a (1,1) self-links, as in the Hopf fibration. This form thus has Arf invariant 0 (most of its elements have norm 0; it has isotropy index 1), and thus the standard embedded torus has Kervaire invariant 0.

Kervaire invariant problem

The question of in which dimensions n there are n-dimensional framed manifolds of nonzero Kervaire invariant is called the Kervaire invariant problem. This is only possible if n is 2 mod 4, and indeed one must have n is of the form (two less than a power of two). The question is almost completely resolved: there are manifolds with nonzero Kervaire invariant in dimension 2, 6, 14, 30, 62, and none in all other dimensions other than possibly 126.

The main results are those of WilliamBrowder  ( 1969 ), who reduced the problem from differential topology to stable homotopy theory and showed that the only possible dimensions are , and those of Michael A.Hill, Michael J. Hopkins ,and Douglas C. Ravenel  ( 2016 ), who showed that there were no such manifolds for (). Together with explicit constructions for lower dimensions (through 62), this leaves open only dimension 126.

It was conjectured by Michael Atiyah that there is such a manifold in dimension 126, and that the higher-dimensional manifolds with nonzero Kervaire invariant are related to well-known exotic manifolds two dimension higher, in dimensions 16, 32, 64, and 128, namely the Cayley projective plane (dimension 16, octonionic projective plane) and the analogous Rosenfeld projective planes (the bi-octonionic projective plane in dimension 32, the quateroctonionic projective plane in dimension 64, and the octo-octonionic projective plane in dimension 128), specifically that there is a construction that takes these projective planes and produces a manifold with nonzero Kervaire invariant in two dimensions lower. [1]

History

Kervaire–Milnor invariant

The Kervaire–Milnor invariant is a closely related invariant of framed surgery of a 2, 6 or 14-dimensional framed manifold, that gives isomorphisms from the 2nd and 6th stable homotopy group of spheres to , and a homomorphism from the 14th stable homotopy group of spheres onto . For n = 2, 6, 14 there is an exotic framing on with Kervaire–Milnor invariant 1.

See also

Related Research Articles

<span class="mw-page-title-main">Differential topology</span> Branch of mathematics

In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape. By comparison differential topology is concerned with coarser properties, such as the number of holes in a manifold, its homotopy type, or the structure of its diffeomorphism group. Because many of these coarser properties may be captured algebraically, differential topology has strong links to algebraic topology.

In mathematics, the Pontryagin classes, named after Lev Pontryagin, are certain characteristic classes of real vector bundles. The Pontryagin classes lie in cohomology groups with degrees a multiple of four.

<span class="mw-page-title-main">Cobordism</span> Concept in mathematics

In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary of a manifold. Two manifolds of the same dimension are cobordant if their disjoint union is the boundary of a compact manifold one dimension higher.

<span class="mw-page-title-main">Linking number</span> Numerical invariant that describes the linking of two closed curves in three-dimensional space

In mathematics, the linking number is a numerical invariant that describes the linking of two closed curves in three-dimensional space. Intuitively, the linking number represents the number of times that each curve winds around the other. In Euclidean space, the linking number is always an integer, but may be positive or negative depending on the orientation of the two curves.

<span class="mw-page-title-main">Geometric topology</span> Branch of mathematics studying (smooth) functions of manifolds

In mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another.

In mathematics, algebraic L-theory is the K-theory of quadratic forms; the term was coined by C. T. C. Wall, with L being used as the letter after K. Algebraic L-theory, also known as "Hermitian K-theory", is important in surgery theory.

In mathematics, in particular in algebraic topology and differential geometry, the Stiefel–Whitney classes are a set of topological invariants of a real vector bundle that describe the obstructions to constructing everywhere independent sets of sections of the vector bundle. Stiefel–Whitney classes are indexed from 0 to n, where n is the rank of the vector bundle. If the Stiefel–Whitney class of index i is nonzero, then there cannot exist everywhere linearly independent sections of the vector bundle. A nonzero nth Stiefel–Whitney class indicates that every section of the bundle must vanish at some point. A nonzero first Stiefel–Whitney class indicates that the vector bundle is not orientable. For example, the first Stiefel–Whitney class of the Möbius strip, as a line bundle over the circle, is not zero, whereas the first Stiefel–Whitney class of the trivial line bundle over the circle, , is zero.

<span class="mw-page-title-main">Homotopy groups of spheres</span> How spheres of various dimensions can wrap around each other

In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure of spheres viewed as topological spaces, forgetting about their precise geometry. Unlike homology groups, which are also topological invariants, the homotopy groups are surprisingly complex and difficult to compute.

In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one.

In the field of topology, the signature is an integer invariant which is defined for an oriented manifold M of dimension divisible by four.

<span class="mw-page-title-main">Manifold</span> Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.

In mathematics, a differentiable manifold of dimension n is called parallelizable if there exist smooth vector fields

<span class="mw-page-title-main">Exceptional object</span>

Many branches of mathematics study objects of a given type and prove a classification theorem. A common theme is that the classification results in a number of series of objects and a finite number of exceptions — often with desirable properties — that do not fit into any series. These are known as exceptional objects. In many cases, these exceptional objects play a further and important role in the subject. Furthermore, the exceptional objects in one branch of mathematics often relate to the exceptional objects in others.

In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by John Milnor. Milnor called this technique surgery, while Andrew Wallace called it spherical modification. The "surgery" on a differentiable manifold M of dimension , could be described as removing an imbedded sphere of dimension p from M. Originally developed for differentiable manifolds, surgery techniques also apply to piecewise linear (PL-) and topological manifolds.

<span class="mw-page-title-main">Arf invariant</span>

In mathematics, the Arf invariant of a nonsingular quadratic form over a field of characteristic 2 was defined by Turkish mathematician Cahit Arf when he started the systematic study of quadratic forms over arbitrary fields of characteristic 2. The Arf invariant is the substitute, in characteristic 2, for the discriminant for quadratic forms in characteristic not 2. Arf used his invariant, among others, in his endeavor to classify quadratic forms in characteristic 2.

In 4-dimensional topology, a branch of mathematics, Rokhlin's theorem states that if a smooth, orientable, closed 4-manifold M has a spin structure, then the signature of its intersection form, a quadratic form on the second cohomology group , is divisible by 16. The theorem is named for Vladimir Rokhlin, who proved it in 1952.

In the mathematical area of topology, the generalized Poincaré conjecture is a statement that a manifold which is a homotopy sphere is a sphere. More precisely, one fixes a category of manifolds: topological (Top), piecewise linear (PL), or differentiable (Diff). Then the statement is

In mathematics, specifically the theory of quadratic forms, an ε-quadratic form is a generalization of quadratic forms to skew-symmetric settings and to *-rings; ε = ±1, accordingly for symmetric or skew-symmetric. They are also called -quadratic forms, particularly in the context of surgery theory.

In the mathematical surgery theory the surgery exact sequence is the main technical tool to calculate the surgery structure set of a compact manifold in dimension . The surgery structure set of a compact -dimensional manifold is a pointed set which classifies -dimensional manifolds within the homotopy type of .

In geometric topology, the de Rham invariant is a mod 2 invariant of a (4k+1)-dimensional manifold, that is, an element of – either 0 or 1. It can be thought of as the simply-connected symmetric L-group and thus analogous to the other invariants from L-theory: the signature, a 4k-dimensional invariant, and the Kervaire invariant, a (4k+2)-dimensional quadratic invariant

References