GRB 080916C

Last updated
GRB 080916C
GRB 080916C Swift observation.jpg
Swift spacecraft's observation of GRB 080916C
Event type Gamma-ray burst   OOjs UI icon edit-ltr-progressive.svg
Constellation Carina   OOjs UI icon edit-ltr-progressive.svg
Right ascension 07h 59m 23.24s
Declination −56° 38 16.8
Distance12,200,000,000 ly (3.7×109 pc)
Total energy output8.8×1054 ergs
Other designationsFermi bn080916009
  Commons-logo.svg Related media on Commons

GRB 080916C is a gamma-ray burst (GRB) that was recorded on September 16, 2008, in the Carina constellation and detected by NASA's Fermi Gamma-ray Space Telescope. The burst lasted for 23 minutes (1400 s). [1] [2] It is one of the most extreme gamma-ray bursts ever recorded, [3] and was the most energetic gamma-ray burst ever recorded, until GRB 221009A was recorded in 2022. The explosion had the energy of approximately 9000 type Ia supernovae if the emission was isotropically emitted, and the gas jets emitting the initial gamma rays moved at a minimum velocity of approximately 299,792,158 m/s (99.9999% the speed of light), making this blast one of the most extreme recorded. [1] [4] [5]

Contents

The 16.5-second delay for the highest-energy gamma ray observed in this burst is consistent with some theories of quantum gravity, which state that all forms of light may not travel through space at the same speed. Very-high-energy gamma rays may be slowed down as they propagate through the quantum turbulence of space-time. [6] [7]

The explosion took place 12.2 billion light-years (light travel distance) away. That means it occurred 12.2 billion years ago—when the universe was only about 1.5 billion years old. The burst lasted for 23 minutes, almost 700 times as long as the two-second average for high energy GRBs. [2] Follow-up observations were made 32 hours after the blast using the Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) on the 2.2 metre telescope at the European Southern Observatory in La Silla, Chile, allowing astronomers to pinpoint the blast's distance to 12.2 billion light years. [8] The object's redshift is z = 4.35.[ citation needed ]

If all that energy from GRB 080916C could be captured and converted into usable electricity at 100% efficiency, it would produce enough electricity to supply the entire planet Earth with 13.5 octillion years of power (according to electricity consumption of 2008).[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Gamma-ray burst</span> Flashes of gamma rays from distant galaxies

In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies, being the brightest and most extreme explosive events in the entire universe, as NASA describes the bursts as the "most powerful class of explosions in the universe". They are the most energetic and luminous electromagnetic events since the Big Bang. Gamma-ray bursts can last from ten milliseconds to several hours. After the initial flash of gamma rays, an "afterglow" is emitted, which is longer lived and usually emitted at longer wavelengths.

<span class="mw-page-title-main">Fermi Gamma-ray Space Telescope</span> Space telescope for gamma-ray astronomy launched in 2008

The Fermi Gamma-ray Space Telescope, formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor, is being used to study gamma-ray bursts and solar flares.

<span class="mw-page-title-main">Neil Gehrels Swift Observatory</span> NASA satellite of the Explorer program

Neil Gehrels Swift Observatory, previously called the Swift Gamma-Ray Burst Explorer, is a NASA three-telescope space observatory for studying gamma-ray bursts (GRBs) and monitoring the afterglow in X-ray, and UV/Visible light at the location of a burst. It was launched on 20 November 2004, aboard a Delta II launch vehicle. Headed by principal investigator Neil Gehrels until his death in February 2017, the mission was developed in a joint partnership between Goddard Space Flight Center (GSFC) and an international consortium from the United States, United Kingdom, and Italy. The mission is operated by Pennsylvania State University as part of NASA's Medium Explorer program (MIDEX).

<span class="mw-page-title-main">GRB 080319B</span> Gamma-ray burst in the constellation Boötes

GRB 080319B was a gamma-ray burst (GRB) detected by the Swift satellite at 06:12 UTC on March 19, 2008. The burst set a new record for the farthest object that was observable with the naked eye: it had a peak visual apparent magnitude of 5.7 and remained visible to human eyes for approximately 30 seconds. The magnitude was brighter than 9.0 for approximately 60 seconds. If viewed from 1 AU away, it would have had a peak apparent magnitude of −67.57. It had an absolute magnitude of −38.6, beaten by GRB 220101A with −39.4 in 2023.

<span class="mw-page-title-main">GRB 080913</span> Supernova detected on September 13, 2008 in the constellation Eridanus

GRB 080913 was a gamma-ray burst (GRB) observed on September 13, 2008. The Swift Gamma-Ray Burst satellite made the detection, with follow-up and additional observations from ground-based observatories and instruments, including the Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) and the Very Large Telescope. At 12.8 billion light-years and redshift of 6.7, the burst was the most distant GRB observed until GRB 090423 on April 23, 2009. This stellar explosion occurred around 825 million years after the Big Bang.

<span class="mw-page-title-main">Gamma-Ray Burst Optical/Near-Infrared Detector</span>

The Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) is an imaging instrument used to investigate Gamma-Ray Burst afterglows and for doing follow-up observations on exoplanets using transit photometry. It is operated at the 2.2-metre MPG/ESO telescope at ESO's La Silla Observatory in the southern part of the Atacama desert, about 600 kilometres north of Santiago de Chile and at an altitude of 2,400 metres.

<span class="mw-page-title-main">GRB 970508</span> Gamma-ray burst detected on May 8, 1997

GRB 970508 was a gamma-ray burst (GRB) detected on May 8, 1997, at 21:42 UTC; it is historically important as the second GRB with a detected afterglow at other wavelengths, the first to have a direct redshift measurement of the afterglow, and the first to be detected at radio wavelengths.

The history of gamma-ray began with the serendipitous detection of a gamma-ray burst (GRB) on July 2, 1967, by the U.S. Vela satellites. After these satellites detected fifteen other GRBs, Ray Klebesadel of the Los Alamos National Laboratory published the first paper on the subject, Observations of Gamma-Ray Bursts of Cosmic Origin. As more and more research was done on these mysterious events, hundreds of models were developed in an attempt to explain their origins.

<span class="mw-page-title-main">GRB 090423</span> Gamma-ray burst detected in 2009

GRB 090423 was a gamma-ray burst (GRB) detected by the Swift Gamma-Ray Burst Mission on April 23, 2009, at 07:55:19 UTC whose afterglow was detected in the infrared and enabled astronomers to determine that its redshift is z = 8.2, making it one of the most distant objects detected at that time with a spectroscopic redshift.

<span class="mw-page-title-main">Gamma-ray astronomy</span> Observational astronomy performed with gamma rays

Gamma-ray astronomy is a subfield of astronomy where scientists observe and study celestial objects and phenomena in outer space which emit cosmic electromagnetic radiation in the form of gamma rays, i.e. photons with the highest energies at the very shortest wavelengths. Radiation below 100 keV is classified as X-rays and is the subject of X-ray astronomy.

<span class="mw-page-title-main">Beethoven Burst (GRB 991216)</span> Gamma-ray burst in constellation Orion

GRB 991216, nicknamed the Beethoven Burst by Dr. Brad Schaefer of Yale University, was a gamma-ray burst observed on December 16, 1999, coinciding with the 229th anniversary of Ludwig van Beethoven's birth. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.

GRB 000131 was a gamma-ray burst (GRB) that was detected on 31 January 2000 at 14:59 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.

GRB 011211 was a gamma-ray burst (GRB) detected on December 11, 2001. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.

GRB 070714B was a gamma-ray burst (GRB) that was detected on 14 July 2007 at 04:59 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.

<span class="mw-page-title-main">GRB 090429B</span> Gamma-ray burst in constellation Canes Venatici

GRB 090429B was a gamma-ray burst observed on 29 April 2009 by the Burst Alert Telescope aboard the Swift satellite. The burst triggered a standard burst-response observation sequence, which started 106 seconds after the burst. The X-ray telescope aboard the satellite identified an uncatalogued fading source. No optical or UV counterpart was seen in the UV–optical telescope. Around 2.5 hours after the burst trigger, a series of observations was carried out by the Gemini North telescope, which detected a bright object in the infrared part of the spectrum. No evidence of a host galaxy was found either by Gemini North or by the Hubble Space Telescope. Though this burst was detected in 2009, it was not until May 2011 that its distance estimate of 13.14 billion light-years was announced. With 90% likelihood, the burst had a photometric redshift greater than z = 9.06, which would make it the most distant GRB known, although the error bar on this estimate is large, providing a lower limit of z > 7.

<span class="mw-page-title-main">GRB 130427A</span>

GRB 130427A was a record-setting gamma-ray burst, discovered starting on April 27, 2013. This GRB was associated to SN 2013cq, of which the appearance of optical signal was predicted on May 2, 2013 and detected on May 13, 2013. The Fermi space observatory detected a gamma-ray with an energy of at least 94 billion electron volts. It was simultaneously detected by the Burst Alert Telescope aboard the Swift telescope and was the brightest burst Swift had ever detected. It was one of the five closest GRBs, at about 3.6 billion light-years away, and was comparatively long-lasting.

Fermi's Large Area Telescope (LAT) recorded one gamma ray with an energy of at least 94 billion electron volts (GeV), or some 35 billion times the energy of visible light, and about three times greater than the LAT's previous record. The GeV emission from the burst lasted for hours, and it remained detectable by the LAT for the better part of a day, setting a new record for the longest gamma-ray emission from a GRB.

<span class="mw-page-title-main">GRB 160625B</span>

GRB 160625B was a bright gamma-ray burst (GRB) detected by NASA's Fermi Gamma-ray Space Telescope on 25 June 2016 and, three minutes later, by the Large Area Telescope. This was followed by a bright prompt optical flash, during which variable linear polarization was measured. This was the first time that these observations were made when the GRB was still bright and active. The source of the GRB was a possible black hole, within the Delphinus constellation, about 9 billion light-years (light travel distance) away (a redshift of z = 1.406). It had a fluence of 5.7×10−4 erg cm−2, and energy of 5 × 1054 erg. The burst lasted over 11 minutes (680 s), and is one of the most energetic bursts ever recorded.

<span class="mw-page-title-main">GRB 221009A</span> Gamma-ray burst

GRB 221009A, also known as Swift J1913.1+1946, was an extraordinarily bright and long-lasting gamma-ray burst (GRB) jointly discovered by the Neil Gehrels Swift Observatory and the Fermi Gamma-ray Space Telescope on October 9, 2022. The gamma-ray burst was ten minutes long, but was detectable for more than ten hours following initial detection. Despite being around two billion light-years away, it was powerful enough to affect Earth's atmosphere, having the strongest effect ever recorded by a gamma-ray burst on the planet. The peak luminosity of GRB 221009A was measured by Konus-Wind to be ~ 2.1 × 1047 W and by Fermi Gamma-ray Burst Monitor to be ~ 1.0 × 1047 W over its 1.024s interval. A burst as energetic and as close to Earth as 221009A is thought to be a once-in-10,000-year event. It was the brightest and most energetic gamma-ray burst ever recorded, with some dubbing it the BOAT, or Brightest Of All Time.

<span class="mw-page-title-main">AT 2021lwx</span> Astronomical Events

AT 2021lwx (also known as ZTF20abrbeie or "Scary Barbie") is the most energetic non-quasar optical transient astronomical event ever observed, with a peak luminosity of 7 × 1045 erg per second (erg s−1) and a total radiated energy between 9.7 × 1052 erg to 1.5 × 1053 erg over three years. Despite being lauded as the largest explosion ever, GRB 221009A was both more energetic and brighter. It was first identified in imagery obtained on 13 April 2021 by the Zwicky Transient Facility (ZTF) astronomical survey and is believed to be due to the accretion of matter into a super massive black hole (SMBH) heavier than one hundred million solar masses (M). It has a redshift of z = 0.9945, which would place it at a distance of about eight billion light-years from earth, and is located in the constellation Vulpecula. No host galaxy has been detected.

References

  1. 1 2 Abdo, A. A.; Ackermann, M.; Arimoto, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D. L.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Battelino, M.; Baughman, B. M.; Bechtol, K. (2009-03-27). "Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C". Science. 323 (5922): 1688–1693. doi: 10.1126/science.1169101 . ISSN   0036-8075.
  2. 1 2 "A Fireball at the edge of the Universe". irfu.cea.fr. 2009-02-18. Retrieved 2023-09-29.
  3. Greiner, J.; Clemens, C.; Krühler, T.; Kienlin, A. von; Rau, A.; Sari, R.; Fox, D. B.; Kawai, N.; Afonso, P.; Ajello, M.; Berger, E.; Cenko, S. B.; Cucchiara, A.; Filgas, R.; Klose, S. (2009-04-01). "The redshift and afterglow of the extremely energetic gamma-ray burst GRB 080916C". Astronomy & Astrophysics. 498 (1): 89–94. doi:10.1051/0004-6361/200811571. ISSN   0004-6361.
  4. Most Extreme Gamma-ray Blast Ever, Seen By Fermi Gamma-ray Space Telescope, Science Daily, February 19, 2009
  5. Huge gamma-ray blast spotted 12.2 bln light-years from earth, AFP, February 19, 2009
  6. Most Powerful Gamma-Ray Burst May Point to New Physics, Sky and Telescope, February 19, 2009
  7. New telescope finds strange behavior in gamma-ray bursts, and also documents the most energetic burst known, Science News, February 20, 2009
  8. Fermi’s record breaking gamma-ray burst Archived 2017-10-21 at the Wayback Machine , Astronomy Now, February 20, 2009