Glide reflection

Last updated
A glide reflection is the composition of a reflection across a line and a translation parallel to the line. Glide reflection.svg
A glide reflection is the composition of a reflection across a line and a translation parallel to the line.
This footprint trail has glide-reflection symmetry. Applying the glide reflection maps each left footprint into a right footprint and vice versa. Krok 6.png
This footprint trail has glide-reflection symmetry. Applying the glide reflection maps each left footprint into a right footprint and vice versa.

In geometry, a glide reflection or transflection is a geometric transformation that consists of a reflection across a hyperplane and a translation ("glide") in a direction parallel to that hyperplane, combined into a single transformation. Because the distances between points are not changed under glide reflection, it is a motion or isometry. When the context is the two-dimensional Euclidean plane, the hyperplane of reflection is a straight line called the glide line or glide axis. When the context is three-dimensional space, the hyperplane of reflection is a plane called the glide plane. The displacement vector of the translation is called the glide vector.

Contents

When some geometrical object or configuration appears unchanged by a transformation, it is said to have symmetry, and the transformation is called a symmetry operation. Glide-reflection symmetry is seen in frieze groups (patterns which repeat in one dimension, often used in decorative borders), wallpaper groups (regular tessellations of the plane), and space groups (which describe e.g. crystal symmetries). Objects with glide-reflection symmetry are in general not symmetrical under reflection alone, but two applications of the same glide reflection result in a double translation, so objects with glide-reflection symmetry always also have a simple translational symmetry.

When a reflection is composed with a translation in a direction perpendicular to the hyperplane of reflection, the composition of the two transformations is a reflection in a parallel hyperplane. However, when a reflection is composed with a translation in any other direction, the composition of the two transformations is a glide reflection, which can be uniquely described as a reflection in a parallel hyperplane composed with a translation in a direction parallel to the hyperplane.

A single glide is represented as frieze group p11g. A glide reflection can be seen as a limiting rotoreflection, where the rotation becomes a translation. It can also be given a Schoenflies notation as S2∞, Coxeter notation as [∞+,2+], and orbifold notation as ∞×.

Frieze groups

In the Euclidean plane, reflections and glide reflections are the only two kinds of indirect (orientation-reversing) isometries.

For example, there is an isometry consisting of the reflection on the x-axis, followed by translation of one unit parallel to it. In coordinates, it takes

(x, y) → (x + 1, −y).

This isometry maps the x-axis to itself; any other line which is parallel to the x-axis gets reflected in the x-axis, so this system of parallel lines is left invariant.

The isometry group generated by just a glide reflection is an infinite cyclic group. [1]

Combining two equal glide reflections gives a pure translation with a translation vector that is twice that of the glide reflection, so the even powers of the glide reflection form a translation group.

In the case of glide-reflection symmetry, the symmetry group of an object contains a glide reflection, and hence the group generated by it. If that is all it contains, this type is frieze group p11g.

Example pattern with this symmetry group: Frieze example p11g.png

A typical example of glide reflection in everyday life would be the track of footprints left in the sand by a person walking on a beach.

Frieze group nr. 6 (glide-reflections, translations and rotations) is generated by a glide reflection and a rotation about a point on the line of reflection. It is isomorphic to a semi-direct product of Z and C2.

Example pattern with this symmetry group: Frieze example p2mg.png

For any symmetry group containing some glide-reflection symmetry, the translation vector of any glide reflection is one half of an element of the translation group. If the translation vector of a glide reflection is itself an element of the translation group, then the corresponding glide-reflection symmetry reduces to a combination of reflection symmetry and translational symmetry.

Wallpaper groups

Glide-reflection symmetry with respect to two parallel lines with the same translation implies that there is also translational symmetry in the direction perpendicular to these lines, with a translation distance which is twice the distance between glide reflection lines. This corresponds to wallpaper group pg; with additional symmetry it occurs also in pmg, pgg and p4g.

If there are also true reflection lines in the same direction then they are evenly spaced between the glide reflection lines. A glide reflection line parallel to a true reflection line already implies this situation. This corresponds to wallpaper group cm. The translational symmetry is given by oblique translation vectors from one point on a true reflection line to two points on the next, supporting a rhombus with the true reflection line as one of the diagonals. With additional symmetry it occurs also in cmm, p3m1, p31m, p4m and p6m.

In the Euclidean plane 3 of 17 wallpaper groups require glide reflection generators. p2gg has orthogonal glide reflections and 2-fold rotations. cm has parallel mirrors and glides, and pg has parallel glides. (Glide reflections are shown below as dashed lines)

Wallpaper group lattice domains, and fundamental domains (yellow)
Crystallographic namepggcmpg
Conway name22×××
Diagram Wallpaper group diagram pgg.svg Wallpaper group diagram cm rotated.svg Wallpaper group diagram pg.svg
Example SymBlend pgg.svg SymBlend cm.svg SymBlend pg.svg

Space groups

Glide planes are noted in the Hermann–Mauguin notation by a, b or c, depending on which axis the glide is along. (The orientation of the plane is determined by the position of the symbol in the Hermann–Mauguin designation.) If the axis is not defined, then the glide plane may be noted by g. When the glide plane is parallel to the screen, these planes may be indicated by a bent arrow in which the arrowhead indicates the direction of the glide. When the glide plane is perpendicular to the screen, these planes can be represented either by dashed lines when the glide is parallel to the plane of the screen or dotted lines when the glide is perpendicular to the plane of the screen. Additionally, a centered lattice can cause a glide plane to exist in two directions at the same time. This type of glide plane may be indicated by a bent arrow with an arrowhead on both sides when the glide plan is parallel to the plane of the screen or a dashed and double-dotted line when the glide plane is perpendicular to the plane of the screen. There is also the n glide, which is a glide along the half of a diagonal of a face, and the d glide, which is along a fourth of either a face or space diagonal of the unit cell . The latter is often called the diamond glide plane as it features in the diamond structure. The n glide plane may be indicated by diagonal arrow when it is parallel to the plane of the screen or a dashed-dotted line when the glide plane is perpendicular to the plane of the screen. A d glide plane may be indicated by a diagonal half-arrow if the glide plane is parallel to the plane of the screen or a dashed-dotted line with arrows if the glide plane is perpendicular to the plane of the screen. If a d glide plane is present in a crystal system, then that crystal must have a centered lattice. [2]

In today's version of Hermann–Mauguin notation, the symbol e is used in cases where there are two possible ways of designating the glide direction because both are true. For example if a crystal has a base-centered Bravais lattice centered on the C face, then a glide of half a cell unit in the a direction gives the same result as a glide of half a cell unit in the b direction.

The isometry group generated by just a glide reflection is an infinite cyclic group. Combining two equal glide plane operations gives a pure translation with a translation vector that is twice that of the glide reflection, so the even powers of the glide reflection form a translation group.

In the case of glide-reflection symmetry, the symmetry group of an object contains a glide reflection and the group generated by it. For any symmetry group containing a glide reflection, the glide vector is one half of an element of the translation group. If the translation vector of a glide plane operation is itself an element of the translation group, then the corresponding glide plane symmetry reduces to a combination of reflection symmetry and translational symmetry.

Examples and applications

Glide symmetry can be observed in nature among certain fossils of the Ediacara biota; the machaeridians; and certain palaeoscolecid worms. [3] It can also be seen in many extant groups of sea pens. [4]

In Conway's Game of Life, a commonly occurring pattern called the glider is so named because it repeats its configuration of cells, shifted by a glide reflection, after two steps of the automaton. After four steps and two glide reflections, the pattern returns to its original orientation, shifted diagonally by one unit. Continuing in this way, it moves across the array of the game. [5]

See also

Notes

  1. Martin, George E. (1982). Transformation Geometry: An Introduction to Symmetry. Undergraduate Texts in Mathematics. Springer. p. 64. ISBN   9780387906362..
  2. "Glide Planes". Birkbeck College, University of London. Retrieved 24 April 2019.
  3. Waggoner, B. M. (1996). "Phylogenetic Hypotheses of the Relationships of Arthropods to Precambrian and Cambrian Problematic Fossil Taxa". Systematic Biology. 45 (2): 190–222. doi: 10.2307/2413615 . JSTOR   2413615.
  4. Zubi, Teresa (2016-01-02). "Octocorals (Stoloniferans, soft corals, sea fans, gorgonians, sea pens) - Starfish Photos - Achtstrahlige Korallen (Röhrenkorallen, Weichkorallen, Hornkoralllen, Seefedern, Fächerkorallen)". starfish.ch. Retrieved 2016-09-08.
  5. Wainwright, Robert T. (1974). "Life is universal!". Proceedings of the 7th conference on Winter simulation - WSC '74. ACM Press. doi: 10.1145/800290.811303 .

Related Research Articles

<span class="mw-page-title-main">Symmetry group</span> Group of transformations under which the object is invariant

In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object. A frequent notation for the symmetry group of an object X is G = Sym(X).

In geometry, an improper rotation is an isometry in Euclidean space that is a combination of a rotation about an axis and a reflection in a plane perpendicular to that axis. Reflection and inversion are each special case of improper rotation. Any improper rotation is an affine transformation and, in cases that keep the coordinate origin fixed, a linear transformation. It is used as a symmetry operation in the context of geometric symmetry, molecular symmetry and crystallography, where an object that is unchanged by a combination of rotation and reflection is said to have improper rotation symmetry.

<span class="mw-page-title-main">Frieze group</span> Type of symmetry group

In mathematics, a frieze or frieze pattern is a two-dimensional design that repeats in one direction. Such patterns occur frequently in architecture and decorative art. Frieze patterns can be classified into seven types according to their symmetries. The set of symmetries of a frieze pattern is called a frieze group.

<span class="mw-page-title-main">Wallpaper group</span> Classification of a two-dimensional repetitive pattern

A wallpaper is a mathematical object covering a whole Euclidean plane by repeating a motif indefinitely, in manner that certain isometries keep the drawing unchanged. For each wallpaper there corresponds a group of congruent transformations, with function composition as the group operation. Thus, a wallpaper group is a mathematical classification of a two‑dimensional repetitive pattern, based on the symmetries in the pattern. Such patterns occur frequently in architecture and decorative art, especially in textiles, tessellations, tiles and physical wallpaper.

<span class="mw-page-title-main">Space group</span> Symmetry group of a configuration in space

In mathematics, physics and chemistry, a space group is the symmetry group of a repeating pattern in space, usually in three dimensions. The elements of a space group are the rigid transformations of the pattern that leave it unchanged. In three dimensions, space groups are classified into 219 distinct types, or 230 types if chiral copies are considered distinct. Space groups are discrete cocompact groups of isometries of an oriented Euclidean space in any number of dimensions. In dimensions other than 3, they are sometimes called Bieberbach groups.

<span class="mw-page-title-main">Monoclinic crystal system</span> One of the 7 crystal systems in crystallography

In crystallography, the monoclinic crystal system is one of the seven crystal systems. A crystal system is described by three vectors. In the monoclinic system, the crystal is described by vectors of unequal lengths, as in the orthorhombic system. They form a parallelogram prism. Hence two pairs of vectors are perpendicular, while the third pair makes an angle other than 90°.

<span class="mw-page-title-main">Euclidean group</span> Isometry group of Euclidean space

In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space ; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformations). The group depends only on the dimension n of the space, and is commonly denoted E(n) or ISO(n).

In crystallography, a crystallographic point group is a set of symmetry operations, corresponding to one of the point groups in three dimensions, such that each operation would leave the structure of a crystal unchanged i.e. the same kinds of atoms would be placed in similar positions as before the transformation. For example, in many crystals in the cubic crystal system, a rotation of the unit cell by 90 degrees around an axis that is perpendicular to one of the faces of the cube is a symmetry operation that moves each atom to the location of another atom of the same kind, leaving the overall structure of the crystal unaffected.

<span class="mw-page-title-main">Rotational symmetry</span> Property of objects which appear unchanged after a partial rotation

Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which it looks exactly the same for each rotation.

<span class="mw-page-title-main">Translational symmetry</span> Invariance of operations under geometric translation

In physics and mathematics, continuous translational symmetry is the invariance of a system of equations under any translation. Discrete translational symmetry is invariant under discrete translation.

The Schoenfliesnotation, named after the German mathematician Arthur Moritz Schoenflies, is a notation primarily used to specify point groups in three dimensions. Because a point group alone is completely adequate to describe the symmetry of a molecule, the notation is often sufficient and commonly used for spectroscopy. However, in crystallography, there is additional translational symmetry, and point groups are not enough to describe the full symmetry of crystals, so the full space group is usually used instead. The naming of full space groups usually follows another common convention, the Hermann–Mauguin notation, also known as the international notation.

In geometry, a Euclidean plane isometry is an isometry of the Euclidean plane, or more informally, a way of transforming the plane that preserves geometrical properties such as length. There are four types: translations, rotations, reflections, and glide reflections.

In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries.

In geometry, orbifold notation is a system, invented by the mathematician William Thurston and promoted by John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The advantage of the notation is that it describes these groups in a way which indicates many of the groups' properties: in particular, it follows William Thurston in describing the orbifold obtained by taking the quotient of Euclidean space by the group under consideration.

<span class="mw-page-title-main">Point groups in two dimensions</span> Geometry concept

In geometry, a two-dimensional point group or rosette group is a group of geometric symmetries (isometries) that keep at least one point fixed in a plane. Every such group is a subgroup of the orthogonal group O(2), including O(2) itself. Its elements are rotations and reflections, and every such group containing only rotations is a subgroup of the special orthogonal group SO(2), including SO(2) itself. That group is isomorphic to R/Z and the first unitary group, U(1), a group also known as the circle group.

<span class="mw-page-title-main">Hermann–Mauguin notation</span> Notation to represent symmetry in point groups, plane groups and space groups

In geometry, Hermann–Mauguin notation is used to represent the symmetry elements in point groups, plane groups and space groups. It is named after the German crystallographer Carl Hermann and the French mineralogist Charles-Victor Mauguin. This notation is sometimes called international notation, because it was adopted as standard by the International Tables For Crystallography since their first edition in 1935.

<span class="mw-page-title-main">Point reflection</span> Geometric symmetry operation

In geometry, a point reflection is a transformation of affine space in which every point is reflected across a specific fixed point. When dealing with crystal structures and in the physical sciences the terms inversion symmetry, inversion center or centrosymmetric are more commonly used.

A line group is a mathematical way of describing symmetries associated with moving along a line. These symmetries include repeating along that line, making that line a one-dimensional lattice. However, line groups may have more than one dimension, and they may involve those dimensions in its isometries or symmetry transformations.

<span class="mw-page-title-main">Symmetry (geometry)</span> Geometrical property

In geometry, an object has symmetry if there is an operation or transformation that maps the figure/object onto itself. Thus, a symmetry can be thought of as an immunity to change. For instance, a circle rotated about its center will have the same shape and size as the original circle, as all points before and after the transform would be indistinguishable. A circle is thus said to be symmetric under rotation or to have rotational symmetry. If the isometry is the reflection of a plane figure about a line, then the figure is said to have reflectional symmetry or line symmetry; it is also possible for a figure/object to have more than one line of symmetry.

References