Gromov's compactness theorem (geometry)

Last updated

In the mathematical field of metric geometry, Mikhael Gromov proved a fundamental compactness theorem for sequences of metric spaces. In the special case of Riemannian manifolds, the key assumption of his compactness theorem is automatically satisfied under an assumption on Ricci curvature. These theorems have been widely used in the fields of geometric group theory and Riemannian geometry.

Contents

Metric compactness theorem

The Gromov–Hausdorff distance defines a notion of distance between any two metric spaces, thereby setting up the concept of a sequence of metric spaces which converges to another metric space. This is known as Gromov–Hausdorff convergence. Gromov found a condition on a sequence of compact metric spaces which ensures that a subsequence converges to some metric space relative to the Gromov–Hausdorff distance: [1]

Let (Xi, di) be a sequence of compact metric spaces with uniformly bounded diameter. Suppose that for every positive number ε there is a natural number N and, for every i, the set Xi can be covered by N metric balls of radius ε. Then the sequence (Xi, di) has a subsequence which converges relative to the Gromov–Hausdorff distance.

The role of this theorem in the theory of Gromov–Hausdorff convergence may be considered as analogous to the role of the Arzelà–Ascoli theorem in the theory of uniform convergence. [2] Gromov first formally introduced it in his 1981 resolution of the Milnor–Wolf conjecture in the field of geometric group theory, where he applied it to define the asymptotic cone of certain metric spaces. [3] These techniques were later extended by Gromov and others, using the theory of ultrafilters. [4]

Riemannian compactness theorem

Specializing to the setting of geodesically complete Riemannian manifolds with a fixed lower bound on the Ricci curvature, the crucial covering condition in Gromov's metric compactness theorem is automatically satisfied as a corollary of the Bishop–Gromov volume comparison theorem. As such, it follows that: [5]

Consider a sequence of closed Riemannian manifolds with a uniform lower bound on the Ricci curvature and a uniform upper bound on the diameter. Then there is a subsequence which converges relative to the Gromov–Hausdorff distance.

The limit of a convergent subsequence may be a metric space without any smooth or Riemannian structure. [6] This special case of the metric compactness theorem is significant in the field of Riemannian geometry, as it isolates the purely metric consequences of lower Ricci curvature bounds.

Related Research Articles

<span class="mw-page-title-main">Metric space</span> Mathematical space with a notion of distance

In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.

<span class="mw-page-title-main">Riemannian geometry</span> Branch of differential geometry

Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric. This gives, in particular, local notions of angle, length of curves, surface area and volume. From those, some other global quantities can be derived by integrating local contributions.

In the mathematical field of Riemannian geometry, the scalar curvature is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls. In the context of the differential geometry of surfaces, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In higher dimensions, however, the scalar curvature only represents one particular part of the Riemann curvature tensor.

<span class="mw-page-title-main">Shing-Tung Yau</span> Chinese mathematician

Shing-Tung Yau is a Chinese-American mathematician and the William Caspar Graustein Professor of Mathematics at Harvard University. In April 2022, Yau announced retirement from Harvard to become Chair Professor of mathematics at Tsinghua University.

In mathematics, Gromov–Hausdorff convergence, named after Mikhail Gromov and Felix Hausdorff, is a notion for convergence of metric spaces which is a generalization of Hausdorff convergence.

In the mathematical field of differential geometry, Ricci-flatness is a condition on the curvature of a (pseudo-)Riemannian manifold. Ricci-flat manifolds are a special kind of Einstein manifold. In theoretical physics, Ricci-flat Lorentzian manifolds are of fundamental interest, as they are the solutions of Einstein's field equations in vacuum with vanishing cosmological constant.

Hopf–Rinow theorem is a set of statements about the geodesic completeness of Riemannian manifolds. It is named after Heinz Hopf and his student Willi Rinow, who published it in 1931. Stefan Cohn-Vossen extended part of the Hopf–Rinow theorem to the context of certain types of metric spaces.

<span class="mw-page-title-main">Mikhael Gromov (mathematician)</span> Russian-French mathematician

Mikhael Leonidovich Gromov is a Russian-French mathematician known for his work in geometry, analysis and group theory. He is a permanent member of Institut des Hautes Études Scientifiques in France and a professor of mathematics at New York University.

In the mathematical field of differential geometry, there are various splitting theorems on when a pseudo-Riemannian manifold can be given as a metric product. The best-known is the Cheeger–Gromoll splitting theorem for Riemannian manifolds, although there has also been research into splitting of Lorentzian manifolds.

In mathematics, the soul theorem is a theorem of Riemannian geometry that largely reduces the study of complete manifolds of non-negative sectional curvature to that of the compact case. Jeff Cheeger and Detlef Gromoll proved the theorem in 1972 by generalizing a 1969 result of Gromoll and Wolfgang Meyer. The related soul conjecture, formulated by Cheeger and Gromoll at that time, was proved twenty years later by Grigori Perelman.

<span class="mw-page-title-main">Richard Schoen</span> American mathematician

Richard Melvin Schoen is an American mathematician known for his work in differential geometry and geometric analysis. He is best known for the resolution of the Yamabe problem in 1984.

In the mathematical field of differential geometry, a smooth map between Riemannian manifolds is called harmonic if its coordinate representatives satisfy a certain nonlinear partial differential equation. This partial differential equation for a mapping also arises as the Euler-Lagrange equation of a functional called the Dirichlet energy. As such, the theory of harmonic maps contains both the theory of unit-speed geodesics in Riemannian geometry and the theory of harmonic functions.

In Riemannian geometry, a branch of mathematics, harmonic coordinates are a certain kind of coordinate chart on a smooth manifold, determined by a Riemannian metric on the manifold. They are useful in many problems of geometric analysis due to their regularity properties.

<span class="mw-page-title-main">Thierry Aubin</span> French mathematician

Thierry Aubin was a French mathematician who worked at the Centre de Mathématiques de Jussieu, and was a leading expert on Riemannian geometry and non-linear partial differential equations. His fundamental contributions to the theory of the Yamabe equation led, in conjunction with results of Trudinger and Schoen, to a proof of the Yamabe Conjecture: every compact Riemannian manifold can be conformally rescaled to produce a manifold of constant scalar curvature. Along with Yau, he also showed that Kähler manifolds with negative first Chern classes always admit Kähler–Einstein metrics, a result closely related to the Calabi conjecture. The latter result, established by Yau, provides the largest class of known examples of compact Einstein manifolds. Aubin was the first mathematician to propose the Cartan–Hadamard conjecture.

In mathematics, the Cartan–Hadamard theorem is a statement in Riemannian geometry concerning the structure of complete Riemannian manifolds of non-positive sectional curvature. The theorem states that the universal cover of such a manifold is diffeomorphic to a Euclidean space via the exponential map at any point. It was first proved by Hans Carl Friedrich von Mangoldt for surfaces in 1881, and independently by Jacques Hadamard in 1898. Élie Cartan generalized the theorem to Riemannian manifolds in 1928. The theorem was further generalized to a wide class of metric spaces by Mikhail Gromov in 1987; detailed proofs were published by Ballmann (1990) for metric spaces of non-positive curvature and by Alexander & Bishop (1990) for general locally convex metric spaces.

In geometry, Alexandrov spaces with curvature ≥ k form a generalization of Riemannian manifolds with sectional curvature ≥ k, where k is some real number. By definition, these spaces are locally compact complete length spaces where the lower curvature bound is defined via comparison of geodesic triangles in the space to geodesic triangles in standard constant-curvature Riemannian surfaces.

In mathematics, an ultralimit is a geometric construction that assigns a limiting metric space to a sequence of metric spaces Xn. The notion of an ultralimit captures the limiting behavior of finite configurations in the spaces Xn and uses an ultrafilter to avoid the process of repeatedly passing to subsequences to ensure convergence. An ultralimit is a generalization of the notion of Gromov–Hausdorff convergence of metric spaces.

<span class="mw-page-title-main">John Lott (mathematician)</span> American mathematician

John William Lott is a professor of Mathematics at the University of California, Berkeley. He is known for contributions to differential geometry.

In Riemannian geometry, a field of mathematics, Preissmann's theorem is a statement that restricts the possible topology of a negatively curved compact Riemannian manifold. It is named for Alexandre Preissmann, who published a proof in 1943.

In mathematics, the intrinsic flat distance is a notion for distance between two Riemannian manifolds which is a generalization of Federer and Fleming's flat distance between submanifolds and integral currents lying in Euclidean space.

References

  1. Bridson & Haefliger 1999, Theorem 5.41; Burago, Burago & Ivanov 2001, Theorem 7.4.15; Gromov 1981, Section 6; Gromov 1999, Proposition 5.2; Petersen 2016, Proposition 11.1.10.
  2. Villani 2009, p. 754.
  3. Gromov 1981, Section 7; Gromov 1999, Paragraph 5.7.
  4. Bridson & Haefliger 1999, Definition 5.50; Gromov 1993, Section 2.
  5. Gromov 1999, Theorem 5.3; Petersen 2016, Corollary 11.1.13.
  6. Gromov 1999, Paragraph 5.5.

Sources.