Host Embedded Controller Interface

Last updated

Host Embedded Controller Interface (HECI) is technology introduced in 2006 used for Active Management Technology (AMT) in Intel chipsets that support Core 2 Duo microprocessors.

Contents

Details

The HECI bus allows the host operating system (OS) to communicate directly with the Management Engine (ME) integrated in the chipset. This bi-directional, variable data-rate bus enables the host and ME to communicate system management information and events in a standards-compliant way, essentially replacing the System Management Bus (SMBus). The bus consists of four wires: a request and grant pair along with a serial transmit and receive data pair.

Original equipment manufacturers (OEMs) have historically provided active management technologies through the use of proprietary on-board controllers, such as Baseboard Management Controllers. These solutions typically suffer two main disadvantages due to their proprietary nature. High BOM costs are usually incurred due to the need for additional components and routing. High product lifecycle costs are incurred due to the non-standard implementation, which increases software and hardware design and validation costs while remaining relatively inflexible to future changes. On the other hand, the inflexibility is even greater with HECI due to coupling HECI with a chipset, and having to redevelop HECI software for each different chipset as opposed to one common BMC software for multiple chipsets.

HECI and the previously used SMBus have the following aspects in common: the Host OS is able to control system management devices such as: on-board fan controllers, remote wake devices such as Wake-on-LAN, power supply devices such as Smart Battery Data. Builtin HECI functionality and third-party management cards can allow the Host OS to directly initiate management events (such as remote wake, or, out-of-band throttling to decrease thermal and power profile) in case HECI is supported by the running OS. Example devices are network cards and graphics cards. Besides that, both HECI and other ME technologies are chipset/ME vendor-specific.

Host-Initiated Messages

Management Engine-Initiated Messages

Example

As an example, assume the case of Wake-on-LAN. Traditionally, the OS controls Wake-on-LAN and must call third-party device drivers to enable support on a network card. With the HECI bus, the host is able to assert its request line (REQ#), the ME will assert its grant line (GNT#), and the host can send its message using its serial transmit signal. Upon receipt of the Wake-on-LAN enable message on HECI, the ME directly enables Wake-on-LAN in the integrated (or externally supported) network device. Without HECI drivers in the OS, Wake-on-LAN functionality is lost even if standard network drivers would be able to enable it. This is a major problem in large-scale enterprise deployments with standard software images.

When the magic wake packet is received by the LAN device, the encapsulated data is passed to the ME, which has its own TCP/IP stack and can decapsulate the packet. The ME then asserts its request line (REQ#), the host acknowledges by asserting grant (GNT#), and the message is passed to the host to initiate a wake event.

With this technology, the magic packet may be encapsulated in TCP packets thus allowing the packet to traverse network infrastructures via routers and thereby increasing the attack surface, something which traditional Wake-on-LAN does not enable. An advantage in Intel-centric deployments is that the solution does not require non-Intel drivers. If no host/ME interaction is needed, HECI and other ME technologies are OS independent.

See also

Sources

Related Research Articles

<span class="mw-page-title-main">Wake-on-LAN</span> Mechanism to wake up computers via a network

Wake-on-LAN is an Ethernet or Token Ring computer networking standard that allows a computer to be turned on or awakened from sleep mode by a network message.

<span class="mw-page-title-main">I²C</span> Serial communication bus

I2C (Inter-Integrated Circuit; pronounced as “eye-squared-C”), alternatively known as I2C or IIC, is a synchronous, multi-master/multi-slave (controller/target), packet switched, single-ended, serial communication bus invented in 1982 by Philips Semiconductors. It is widely used for attaching lower-speed peripheral ICs to processors and microcontrollers in short-distance, intra-board communication.

<span class="mw-page-title-main">Network interface controller</span> Hardware component that connects a computer to a network

A network interface controller is a computer hardware component that connects a computer to a computer network.

The System Management Bus is a single-ended simple two-wire bus for the purpose of lightweight communication. Most commonly it is found in chipsets of computer motherboards for communication with the power source for ON/OFF instructions. The exact functionality and hardware interfaces vary with vendors.

A host controller interface (HCI) is a register-level interface that enables a host controller for USB or IEEE 1394 hardware to communicate with a host controller driver in software. The driver software is typically provided with an operating system of a personal computer, but may also be implemented by application-specific devices such as a microcontroller.

The Advanced Host Controller Interface (AHCI) is a technical standard defined by Intel that specifies the register-level interface of Serial ATA (SATA) host controllers in a non-implementation-specific manner in its motherboard chipsets.

The Intelligent Platform Management Interface (IPMI) is a set of computer interface specifications for an autonomous computer subsystem that provides management and monitoring capabilities independently of the host system's CPU, firmware and operating system. IPMI defines a set of interfaces used by system administrators for out-of-band management of computer systems and monitoring of their operation. For example, IPMI provides a way to manage a computer that may be powered off or otherwise unresponsive by using a network connection to the hardware rather than to an operating system or login shell. Another use case may be installing a custom operating system remotely. Without IPMI, installing a custom operating system may require an administrator to be physically present near the computer, insert a DVD or a USB flash drive containing the OS installer and complete the installation process using a monitor and a keyboard. Using IPMI, an administrator can mount an ISO image, simulate an installer DVD, and perform the installation remotely.

<span class="mw-page-title-main">Apple–Intel architecture</span> Unofficial name used for Macintosh models that use Intel x86 processors

The Apple–Intel architecture, or Mactel, is an unofficial name used for Macintosh personal computers developed and manufactured by Apple Inc. that use Intel x86 processors, rather than the PowerPC and Motorola 68000 ("68k") series processors used in their predecessors or the ARM-based Apple silicon SoCs used in their successors. With the change in architecture, a change in firmware became necessary; Apple selected the Intel-designed Extensible Firmware Interface (EFI) as its comparable component to the Open Firmware used on its PowerPC architectures, and as the firmware-based replacement for the PC BIOS from Intel. With the change in processor architecture to x86, Macs gained the ability to boot into x86-native operating systems, while Intel VT-x brought near-native virtualization with macOS as the host OS.

<span class="mw-page-title-main">SiS 630/730</span>

The SiS 630 and SiS 730 are a family of highly integrated chipsets for Intel and AMD respectively. At the time of release they were unique in that they not only provided VGA, Audio, LAN, IDE and USB functionality on board, but were also in a single-chip solution. At the time of release (1999) most chipsets were composed of physically separate north-bridge and south-bridge chips. Only later have single-chip solutions become popular in the mainstream, with chipsets such as the nVidia nForce4.

Intel vPro technology is an umbrella marketing term used by Intel for a large collection of computer hardware technologies, including VT-x, VT-d, Trusted Execution Technology (TXT), and Intel Active Management Technology (AMT). When the vPro brand was launched, it was identified primarily with AMT, thus some journalists still consider AMT to be the essence of vPro.

<span class="mw-page-title-main">Out-of-band management</span> Management of networking equipment

In systems management, out-of-band management involves the use of management interfaces for managing networking equipment. Out-of-band (OOB) management is a networking term which refers to accessing and managing network infrastructure at remote locations, and doing it through a separate management plane from the production network. Cellular 4G and 5G networks are used today for out-of-band management and many manufacturers have it as a product offering. Out-of-band management is now considered an essential network component to ensure business continuity.

Platform Environment Control Interface, abbreviated as PECI, is an Intel proprietary single wire serial interface that provides a communication channel between Intel processors and chipset components to external system management logic and thermal monitoring devices. Also, PECI provides an interface for external devices to read processor temperature, perform processor manageability functions, and manage processor interface tuning and diagnostics. Typically in server platforms, CPUs are the PECI slaves and PCH is the PECI master, meanwhile in client segment, CPU is usually the PECI slave and EC/BMC is the PECI master. PECI was introduced in 2006 with the Intel Core 2 Duo microprocessors.

<span class="mw-page-title-main">Intel Active Management Technology</span> Out-of-band management platform

Intel Active Management Technology (AMT) is hardware and firmware for remote out-of-band management of select business computers, running on the Intel Management Engine, a microprocessor subsystem not exposed to the user, intended for monitoring, maintenance, updating, and repairing systems. Out-of-band (OOB) or hardware-based management is different from software-based management and software management agents.

I/O Controller Hub (ICH) is a family of Intel southbridge microchips used to manage data communications between a CPU and a motherboard, specifically Intel chipsets based on the Intel Hub Architecture. It is designed to be paired with a second support chip known as a northbridge. As with any other southbridge, the ICH is used to connect and control peripheral devices.

Intel Active Management Technology (AMT) is hardware-based technology built into PCs with Intel vPro technology. AMT is designed to help sys-admins remotely manage and secure PCs out-of-band when PC power is off, the operating system (OS) is unavailable, software management agents are missing, or hardware has failed.

NC-SI, abbreviated from network controller sideband interface, is an electrical interface and protocol defined by the Distributed Management Task Force (DMTF). The NC-SI enables the connection of a baseboard management controller (BMC) to one or more network interface controllers (NICs) in a server computer system for the purpose of enabling out-of-band system management. This allows the BMC to use the network connections of the NIC ports for the management traffic, in addition to the regular host traffic.

Alert Standard Format (ASF) is a DMTF standard for remote monitoring, management and control of computer systems in both OS-present and OS-absent environments. These technologies are primarily focused on minimizing on-site I/T maintenance, maximizing system availability and performance to the local user.

Management Component Transport Protocol (MCTP) is a protocol designed by the Distributed Management Task Force (DMTF) to support communications between different intelligent hardware components that make up a platform management subsystem, providing monitoring and control functions inside a managed computer system. This protocol is independent of the underlying physical bus properties, as well as the data link layer messaging used on the bus. The MCTP communication model includes a message format, transport description, message exchange patterns, and operational endpoint characteristics.

<span class="mw-page-title-main">Intel Management Engine</span> Autonomous computer subsystem

The Intel Management Engine (ME), also known as the Intel Manageability Engine, is an autonomous subsystem that has been incorporated in virtually all of Intel's processor chipsets since 2008. It is located in the Platform Controller Hub of modern Intel motherboards.

An Embedded Controller (EC) is a microcontroller in computers that handles various system tasks. Now it is usually merged with Super I/O, especially on mobile platforms.