IEEE 802.11mc

Last updated

Task Group mc (TGmc) of the IEEE 802.11 Working Group, sometimes referred to as IEEE 802.11mc, was the third maintenance/revision group for the IEEE 802.11 WLAN standards. [1] [2] Purpose was to incorporate accumulated maintenance changes (editorial and technical corrections) into IEEE Std 802.11-2012, and roll up approved amendments into the standard. [3]

Contents

The work by TGmc resulted in the publication of IEEE Std 802.11-2016 in 2016. [2]

TGmc has ceased its operation. Maintenance/revision for IEEE Std 802.11-2016 is being handled by TGmd. [2]

Amendments rolled-In

Following amendments were incorporated by TGmc on top of IEEE Std 802.11-2012:

Wi-Fi Round Trip Time

While it is not the main purpose of the maintenance/revision group, some features deemed not big enough to require a full Task Group within the IEEE 802.11 WG are sometimes added to the IEEE 802.11 standard via the maintenance/revision group.

The main feature added through TGmc is commonly known as Wi-Fi Round Trip Time (Wi-Fi RTT). It allows computing devices to measure the distance to nearby Wi-Fi access points (APs) and determine their indoor location with a precision of 1–2 metres using round-trip delay. [4] The accuracy is better than estimations with trilateration based on received signal strength indication (RSSI).

Concept

With a single Wi-Fi access point, only a distance measurement is available. With three or more nearby APs, an app can trilaterate a device's location with an accuracy of one to two meters.

The technology operation principle is based on time delay in signal reception and transmission - the time necessary for sending a signal and the time required for receiving its confirmation have to be taken into account. The system calculates this time span and then multiplies it by the speed of light. [4]

Not all devices have the necessary hardware support yet for this feature. At present the list of the certified routers contains only the following models: [4]

Application

With accurate indoor position awareness, apps can perform advanced automation based on where a device is in a building. For example, a smartphone user can have lights turn on when they enter a particular room by simply making voice commands since the device is location-aware (e.g. "turn on the lights in this room").

The technology makes it possible to create location-based applications and detailed services that let users orient easily inside buildings. In comparison with BLE, the function ensures higher accuracy in defining location and accelerates production processes. [5]

Navigine tested the performance of the Wi-Fi RTT technology and made the conclusion that, subject to the specified requirements, the obtained result exceeds the declared values. Thus, within 95% of the time, the positioning accuracy in the check point is less than 1 m and within 50% of the time, the accuracy figures are kept within the limits of 30 cm. The delay in locating doesn’t exceed 1 sec. Such time frames can be achieved by using the function of calculating pedestrian coordinates (PDR) within the particle filter. [5]

Android Pie

Wi-Fi Round-Trip-Time in Android Pie does not require that the phone connect to any Wi-Fi access points. Only the phone is used to determine distance, not the APs[ citation needed ]. This feature is also tied into the Android operating system's existing location system to preserve the user's privacy. Apps using round-trip delay time (RTT) need the location permission, and the device must have location-based services enabled at the system level.

Many smartphone models with the Android 9 or later operating system can calculate the distance to access points. The following devices support Wi-Fi RTT technology: Xiaomi, LG Corporation, Samsung, Google Pixel, Poco X2, Sharp Aquos. [4]

Related Research Articles

IEEE 802.11 Specifications for Wi-FI wireless networks

IEEE 802.11 is part of the IEEE 802 set of local area network (LAN) technical standards, and specifies the set of media access control (MAC) and physical layer (PHY) protocols for implementing wireless local area network (WLAN) computer communication. The standard and amendments provide the basis for wireless network products using the Wi-Fi brand and are the world's most widely used wireless computer networking standards. IEEE 802.11 is used in most home and office networks to allow laptops, printers, smartphones, and other devices to communicate with each other and access the Internet without connecting wires.

In telecommunications, round-trip delay (RTD) or round-trip time (RTT) is the amount of time it takes for a signal to be sent plus the amount of time it takes for acknowledgement of that signal having been received. This time delay includes propagation times for the paths between the two communication endpoints. In the context of computer networks, the signal is typically a data packet. RTT is also known as ping time, and can be determined with the ping command.

Wi-Fi Wireless local area networks technology based on IEEEs 802.11 standards

Wi-Fi is a family of wireless network protocols, based on the IEEE 802.11 family of standards, which are commonly used for local area networking of devices and Internet access, allowing nearby digital devices to exchange data by radio waves. These are the most widely used computer networks in the world, used globally in home and small office networks to link desktop and laptop computers, tablet computers, smartphones, smart TVs, printers, and smart speakers together and to a wireless router to connect them to the Internet, and in wireless access points in public places like coffee shops, hotels, libraries and airports to provide the public Internet access for mobile devices.

Wireless access point

In computer networking, a wireless access point (WAP), or more generally just access point (AP), is a networking hardware device that allows other Wi-Fi devices to connect to a wired network. As a standalone device, the AP may have a wired connection to a router, but, in a wireless router, it can also be an integral component of the router itself. An AP is differentiated from a hotspot which is a physical location where Wi-Fi access is available.

WiMAX

WiMAX is a family of wireless broadband communication standards based on the IEEE 802.16 set of standards, which provide multiple physical layer (PHY) and Media Access Control (MAC) options.

Wi-Fi Alliance Organization that supports the Wi-Fi alliance

The Wi-Fi Alliance owns the Wi-Fi trademark. Manufacturers may use the trademark to brand certified products that have been tested for interoperability.

Mobile phone tracking

Mobile phone tracking is a process for identifying the location of a mobile phone, whether stationary or moving. Localization may be effected by a number of technologies, such as using multilateration of radio signals between (several) cell towers of the network and the phone, or simply using GPS. To locate a mobile phone using multilateration of mobile radio signals, it must emit at least the idle signal to contact nearby antenna towers, but the process does not require an active call. The Global System for Mobile Communications (GSM) is based on the phone's signal strength to nearby antenna masts.

IEEE 802.11n-2009 or 802.11n is a wireless-networking standard that uses multiple antennas to increase data rates. The Wi-Fi Alliance has also retroactively labelled the technology for the standard as Wi-Fi 4. It standardized support for multiple-input multiple-output, frame aggregation, and security improvements, among other features, and can be used in the 2.4 GHz or 5 GHz frequency bands.

Qualcomm Atheros is a developer of semiconductor chips for network communications, particularly wireless chipsets. Founded under the name T-Span Systems in 1998 by experts in signal processing and VLSI design from Stanford University, the University of California, Berkeley and private industry. The company was renamed Atheros Communications in 2000 and it completed an initial public offering in February 2004 trading on NASDAQ under the symbol ATHR.

Generic Access Network (GAN) is a protocol that extends mobile voice, data and multimedia applications over IP networks. Unlicensed Mobile Access (UMA) is the commercial name used by mobile carriers for external IP access into their core networks. The latest generation system is named Wi-Fi Calling or VoWiFi by a number of handset manufacturers, including Apple and Samsung, a move that is being mirrored by carriers like T-Mobile US and Vodafone. The service is dependent on IMS, IPsec, IWLAN and ePDG.

A wide variety of different wireless data technologies exist, some in direct competition with one another, others designed for specific applications. Wireless technologies can be evaluated by a variety of different metrics of which some are described in this entry.

An indoor positioning system (IPS) is a network of devices used to locate people or objects where GPS and other satellite technologies lack precision or fail entirely, such as inside multistory buildings, airports, alleys, parking garages, and underground locations.

Wi-Fi positioning system is a geolocation system that uses the characteristics of nearby Wi-Fi hotspots and other wireless access points to discover where a device is located. It is used where satellite navigation such as GPS is inadequate due to various causes including multipath and signal blockage indoors, or where acquiring a satellite fix would take too long. Such systems include assisted GPS, urban positioning services through hotspot databases, and indoor positioning systems. Wi-Fi positioning takes advantage of the rapid growth in the early 21st century of wireless access points in urban areas.

Navizon

Navizon, Inc. is a provider of location-based services and products. Navizon was an early developer of technology that makes it possible to determine the geographic position of a mobile device using as reference the location of cell phone towers and Wi-Fi-based wireless access points instead of GPS. Navizon also developed technology for locating mobile devices indoors with room and floor-level accuracy.

IEEE 802.11s is a wireless LAN standard and an IEEE 802.11 amendment for mesh networking, defining how wireless devices can interconnect to create a wireless LAN (WLAN) mesh network, which may be used for relatively fixed topologies and wireless ad hoc networks. The IEEE 802.11s task group drew upon volunteers from university and industry to provide specifications and possible design solutions for wireless mesh networking. As a standard, the document was iterated and revised many times prior to finalization.

IEEE 802.11ah is a wireless networking protocol published in 2017 called Wi-Fi HaLow as an amendment of the IEEE 802.11-2007 wireless networking standard. It uses 900 MHz license-exempt bands to provide extended range Wi-Fi networks, compared to conventional Wi-Fi networks operating in the 2.4 GHz and 5 GHz bands. It also benefits from lower energy consumption, allowing the creation of large groups of stations or sensors that cooperate to share signals, supporting the concept of the Internet of Things (IoT). The protocol's low power consumption competes with Bluetooth and has the added benefit of higher data rates and wider coverage range.

Google OnHub

Google OnHub is a residential wireless router product from Google, Inc. The two variants are manufactured by TP-Link and ASUS. Google's official tagline for the product is "We’re streaming and sharing in new ways our old routers were never built to handle. Meet OnHub, a router from Google that is built for all the ways you use Wi-Fi." In 2016, Google released the Google Wifi router with mesh networking, and combined its functionality and network administration with the OnHub so that OnHub and Google Wifi may both be used interchangeably in mesh networks.

Google Nest Wifi Mesh-capable wireless router developed by Google

Google Nest Wifi, the successor to Google Wifi, is a line of mesh-capable wireless routers and add-on points developed by Google as part of the Google Nest family of products. The first generation was announced on October 4, 2016, and released in the United States on December 5, 2016. The second generation was announced at the Pixel 4 hardware event on October 15, 2019, and was released in the United States on November 4, 2019.

Moustafa Youssef Egyptian computer scientist

Moustafa Youssef is an Egyptian computer scientist who was named Fellow of the Institute of Electrical and Electronics Engineers (IEEE) in 2019 for contributions to wireless location tracking technologies and a Fellow of the Association of Computing Machinery (ACM) in 2019 for contributions to location tracking algorithms. He is the first and only ACM Fellow in the Middle East and Africa.

References

  1. "IEEE 802.11, The Working Group Setting the Standards for Wireless LANs". Ieee802.org.
  2. 1 2 3 "IEEE P802 - Task Group M Status". Ieee802.org.
  3. "IEEE P802.11 Wireless LANs" (DOC). Mentor.ieee.org. Retrieved 28 February 2019.
  4. 1 2 3 4 "Wi-Fi location: ranging with RTT, Google Developers".
  5. 1 2 "A needle in a haystack: how Wi-Fi RTT takes Indoor Positioning to the next level, Navigine".