IEEE P802.1p

Last updated

IEEE P802.1p was a task group active from 1995 to 1998, responsible for adding traffic class expediting and dynamic multicast filtering to the IEEE 802.1D standard. The task group developed a mechanism for implementing quality of service (QoS) at the media access control (MAC) level. Although this technique is commonly referred to as IEEE 802.1p, the group's work with the new priority classes and Generic Attribute Registration Protocol (GARP) was not published separately but was incorporated [1] into a major revision of the standard, IEEE 802.1D-1998, [2] which subsequently was incorporated into IEEE 802.1Q-2014 standard. [3] The work also required a short amendment extending the frame size of the Ethernet standard by four bytes which was published as IEEE 802.3ac in 1998.

Contents

The QoS technique developed by the working group, also known as class of service (CoS), is a 3-bit field called the Priority Code Point (PCP) within an Ethernet frame header when using VLAN tagged frames as defined by IEEE 802.1Q. It specifies a priority value of between 0 and 7 inclusive that can be used by QoS disciplines to differentiate traffic.

Priority levels

Eight different classes of service are available as expressed through the 3-bit PCP field in an IEEE 802.1Q header added to the frame. The way traffic is treated when assigned to any particular class is undefined and left to the implementation. The IEEE, however, has made some broad recommendations: [4]

PCP valuePriorityAcronymTraffic types
10 (lowest)BKBackground
01 (default)BEBest effort
22EEExcellent effort
33CACritical applications
44VIVideo, < 100 ms latency and jitter
55VOVoice, < 10 ms latency and jitter
66ICInternetwork control
77 (highest)NCNetwork control

Note that the above recommendations have been in force since IEEE 802.1Q-2005 and were revised from the original recommendations in IEEE 802.1D-2004 to better accommodate differentiated services for IP networking.

See also

Related Research Articles

Ethernet Computer networking technology

Ethernet is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.

IEEE 802.2 is the original name of the ISO/IEC 8802-2 standard which defines logical link control (LLC) as the upper portion of the data link layer of the OSI Model. The original standard developed by the Institute of Electrical and Electronics Engineers (IEEE) in collaboration with the American National Standards Institute (ANSI) was adopted by the International Organization for Standardization (ISO) in 1998, but it still remains an integral part of the family of IEEE 802 standards for local and metropolitan networks.

Quality of service (QoS) is the description or measurement of the overall performance of a service, such as a telephony or computer network or a cloud computing service, particularly the performance seen by the users of the network. To quantitatively measure quality of service, several related aspects of the network service are often considered, such as packet loss, bit rate, throughput, transmission delay, availability, jitter, etc.

A virtual LAN (VLAN) is any broadcast domain that is partitioned and isolated in a computer network at the data link layer. LAN is the abbreviation for local area network and in this context virtual refers to a physical object recreated and altered by additional logic. VLANs work by applying tags to network frames and handling these tags in networking systems – creating the appearance and functionality of network traffic that is physically on a single network but acts as if it is split between separate networks. In this way, VLANs can keep network applications separate despite being connected to the same physical network, and without requiring multiple sets of cabling and networking devices to be deployed.

EtherType is a two-octet field in an Ethernet frame. It is used to indicate which protocol is encapsulated in the payload of the frame and is used at the receiving end by the data link layer to determine how the payload is processed. The same field is also used to indicate the size of some Ethernet frames.

A multilayer switch (MLS) is a computer networking device that switches on OSI layer 2 like an ordinary network switch and provides extra functions on higher OSI layers.

IEEE 802.11e-2005 or 802.11e is an approved amendment to the IEEE 802.11 standard that defines a set of quality of service (QoS) enhancements for wireless LAN applications through modifications to the media access control (MAC) layer. The standard is considered of critical importance for delay-sensitive applications, such as Voice over Wireless LAN and streaming multimedia. The amendment has been incorporated into the published IEEE 802.11-2007 standard.

Class of service is a parameter used in data and voice protocols to differentiate the types of payloads contained in the packet being transmitted. The objective of such differentiation is generally associated with assigning priorities to the data payload or access levels to the telephone call.

IEEE 802.1Q, often referred to as Dot1q, is the networking standard that supports virtual LANs (VLANs) on an IEEE 802.3 Ethernet network. The standard defines a system of VLAN tagging for Ethernet frames and the accompanying procedures to be used by bridges and switches in handling such frames. The standard also contains provisions for a quality-of-service prioritization scheme commonly known as IEEE 802.1p and defines the Generic Attribute Registration Protocol.

Ethernet flow control Technique to suspend transmission to avoid congestion

Ethernet flow control is a mechanism for temporarily stopping the transmission of data on Ethernet family computer networks. The goal of this mechanism is to avoid packet loss in the presence of network congestion.

In computer networking, jumbo frames are Ethernet frames with more than 1500 bytes of payload, the limit set by the IEEE 802.3 standard. Commonly, jumbo frames can carry up to 9000 bytes of payload, but smaller and larger variations exist and some care must be taken using the term. Many Gigabit Ethernet switches and Gigabit Ethernet network interface controllers can support jumbo frames. Some Fast Ethernet switches and Fast Ethernet network interface cards can also support jumbo frames.

Provider Backbone Bridges is a set of architecture and protocols for routing over a provider's network allowing interconnection of multiple Provider Bridge Networks without losing each customer's individually defined VLANs. It was initially created by Nortel before being submitted to the IEEE 802.1 committee for standardization. The final standard was approved by the IEEE in June 2008 as IEEE 802.1ah-2008 and has been integrated into IEEE 802.1Q-2011.

In computer networking, an Ethernet frame is a data link layer protocol data unit and uses the underlying Ethernet physical layer transport mechanisms. In other words, a data unit on an Ethernet link transports an Ethernet frame as its payload.

Carrier Ethernet is a marketing term for extensions to Ethernet for communications service providers that utilize Ethernet technology in their networks.

Stream Reservation Protocol (SRP) is an enhancement to Ethernet that implements admission control. In September 2010 SRP was standardized as IEEE 802.1Qat which has subsequently been incorporated into IEEE 802.1Q-2011. SRP defines the concept of streams at layer 2 of the OSI model. Also provided is a mechanism for end-to-end management of the streams' resources, to guarantee quality of service (QoS).

Data center bridging (DCB) is a set of enhancements to the Ethernet local area network communication protocol for use in data center environments, in particular for use with clustering and storage area networks.

Shortest Path Bridging (SPB), specified in the IEEE 802.1aq standard, is a computer networking technology intended to simplify the creation and configuration of networks, while enabling multipath routing.

IEEE 802.1ad is an Ethernet networking standard informally known as QinQ as an amendment to IEEE standard IEEE 802.1Q-1998 that was incorporated into the base 802.1Q standard in 2011. The technique is also known as provider bridging and stacked VLANs.

Time-Sensitive Networking (TSN) is a set of standards under development by the Time-Sensitive Networking task group of the IEEE 802.1 working group. The TSN task group was formed in November 2012 by renaming the existing Audio Video Bridging Task Group and continuing its work. The name changed as a result of the extension of the working area of the standardization group. The standards define mechanisms for the time-sensitive transmission of data over deterministic Ethernet networks.

Audio Video Bridging Specifications for synchronized, low-latency streaming through IEEE 802 networks

Audio Video Bridging (AVB) is a common name for the set of technical standards which provide improved synchronization, low-latency, and reliability for switched Ethernet networks. AVB embodies the following technologies and standards:

References

  1. "IEEE 802.1". p. 802.1p section.[ failed verification ]
  2. IEEE 802.1D-1998
  3. "802.1Q-2014 - Bridges and Bridged Networks". IEEE.
  4. IEEE Std 802.1Q-2014, Bridges and Bridged Networks (PDF), Table I-2 - Traffic type acronyms