Immunopathology

Last updated

Immunopathology is a branch of medicine that deals with immune responses associated with disease. It includes the study of the pathology of an organism, organ system, or disease with respect to the immune system, immunity, and immune responses. In biology, it refers to damage caused to an organism by its own immune response, as a result of an infection. It could be due to mismatch between pathogen and host species, and often occurs when an animal pathogen infects a human (e.g. avian flu leads to a cytokine storm which contributes to the increased mortality rate). [1]

When a foreign antigen enters the body, there is either an antigen specific or nonspecific response to it. These responses are the immune system fighting off the foreign antigens, whether they are deadly or not. Immunopathology could refer to how the foreign antigens cause the immune system to have a response or problems that can arise from an organism's own immune response on itself. There are certain problems or faults in the immune system that can lead to more serious illness or disease. These diseases can come from one of the following problems. The first would be Hypersensitivity reactions, where there would be a stronger immune response than normal. There are four different types (type one, two, three and four), all with varying types and degrees of an immune response. The problems that arise from each type vary from small allergic reactions to more serious illnesses such as tuberculosis or arthritis. The second kind of complication in the immune system is Autoimmunity, where the immune system would attack itself rather than the antigen. Inflammation is a prime example of autoimmunity, as the immune cells used are self-reactive. A few examples of autoimmune diseases are Type 1 diabetes, Addison's disease and Celiac disease. The third and final type of complication with the immune system is Immunodeficiency, where the immune system lacks the ability to fight off a certain disease. The immune system's ability to combat it is either hindered or completely absent. The two types are Primary Immunodeficiency, where the immune system is either missing a key component or does not function properly, and Secondary Immunodeficiency, where disease is obtained from an outside source, like radiation or heat, and therefore cannot function properly. Diseases that can cause immunodeficiency include HIV, AIDS and leukemia. [2]

In all vertebrates, there are two different kinds of immune responses: Innate and Adaptive immunity. Innate immunity is used to fight off non-changing antigens and is therefore considered nonspecific. It is usually a more immediate response than the adaptive immune system, usually responding within minutes to hours. [2] It is composed of physical blockades such as the skin, but also contains nonspecific immune cells such as dendritic cells, macrophages, and basophils. The second form of immunity is Adaptive immunity. This form of immunity requires recognition of the foreign antigen before a response is produced. Once the antigen is recognized, a specific response is produced in order to destroy the specific antigen. Because of this idea, adaptive immunity is considered to be specific immunity. A key part of adaptive immunity that separates it from innate is the use of memory to combat the antigen in the future. When the antigen is originally introduced, the organism does not have any receptors for the antigen so it must generate them from the first time the antigen is present. The immune system then builds a memory of that antigen, which enables it to recognize the antigen quicker in the future and be able to combat it quicker and more efficiently. The more the system is exposed to the antigen, the quicker it will build up its responsiveness. [3]

Related Research Articles

Immune system Biological system protecting an organism against disease

The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as cancer cells and objects such as wood splinters, distinguishing them from the organism's own healthy tissue. Many species have two major subsystems of the immune system. The innate immune system provides a preconfigured response to broad groups of situations and stimuli. The adaptive immune system provides a tailored response to each stimulus by learning to recognize molecules it has previously encountered. Both use molecules and cells to perform their functions.

Immunology Branch of medicine studying the immune system

Immunology is a branch of biology and medicine that covers the study of immune systems in all organisms. Immunology charts, measures, and contextualizes the physiological functioning of the immune system in states of both health and diseases; malfunctions of the immune system in immunological disorders ; and the physical, chemical, and physiological characteristics of the components of the immune system in vitro, in situ, and in vivo. Immunology has applications in numerous disciplines of medicine, particularly in the fields of organ transplantation, oncology, rheumatology, virology, bacteriology, parasitology, psychiatry, and dermatology.

Autoimmunity is the system of immune responses of an organism against its own healthy cells, tissues and other body normal constituents. Any disease resulting from this type of immune response is termed an "autoimmune disease". Prominent examples include celiac disease, post-infectious IBS, diabetes mellitus type 1, Henloch Scholein Pupura (HSP) sarcoidosis, systemic lupus erythematosus (SLE), Sjögren syndrome, eosinophilic granulomatosis with polyangiitis, Hashimoto's thyroiditis, Graves' disease, idiopathic thrombocytopenic purpura, Addison's disease, rheumatoid arthritis (RA), ankylosing spondylitis, polymyositis (PM), dermatomyositis (DM) and multiple sclerosis (MS). Autoimmune diseases are very often treated with steroids.

An immune response is a reaction which occurs within an organism for the purpose of defending against foreign invaders. These invaders include a wide variety of different microorganisms including viruses, bacteria, parasites, and fungi which could cause serious problems to the health of the host organism if not cleared from the body. There are two distinct aspects of the immune response, the innate and the adaptive, which work together to protect against pathogens. The innate branch—the body's first reaction to an invader—is known to be a non-specific and quick response to any sort of pathogen. Components of the innate immune response include physical barriers like the skin and mucous membranes, immune cells such as neutrophils, macrophages, and monocytes, and soluble factors including cytokines and complement. On the other hand, the adaptive branch is the body's immune response which is catered against specific antigens and thus, it takes longer to activate the components involved. The adaptive branch include cells such as dendritic cells, T cell, and B cells as well as antibodies—also known as immunoglobulins—which directly interact with antigen and are a very important component for a strong response against an invader.

Cytotoxic T cell T cell that kills infected, damaged or cancerous cells

A cytotoxic T cell (also known as TC, cytotoxic T lymphocyte, CTL, T-killer cell, cytolytic T cell, CD8+ T-cell or killer T cell) is a T lymphocyte (a type of white blood cell) that kills cancer cells, cells that are infected by intracellular pathogens (such as viruses or bacteria), or cells that are damaged in other ways.

T helper cell Type of immune cell

The T helper cells (Th cells), also known as CD4+ cells or CD4-positive cells, are a type of T cell that play an important role in the immune system, particularly in the adaptive immune system. As their name suggests, they "help" the activity of other immune cells by releasing cytokines, small protein mediators that alter the behavior of target cells that express receptors for those cytokines. These cells help to polarize the immune response into the appropriate kind depending on the nature of the immunological insult (virus vs. extracellular bacterium vs. intracellular bacterium vs. helminth vs. fungus vs. protist). They are generally considered essential in B cell antibody class switching, breaking cross-tolerance in dendritic cells, in the activation and growth of cytotoxic T cells, and in maximizing bactericidal activity of phagocytes such as macrophages and neutrophils.

In biology, immunity is the capability of multicellular organisms to resist harmful microorganisms. Immunity involves both specific and nonspecific components. The nonspecific components act as barriers or eliminators of a wide range of pathogens irrespective of their antigenic make-up. Other components of the immune system adapt themselves to each new disease encountered and can generate pathogen-specific immunity.

Humoral immunity is the aspect of immunity that is mediated by macromolecules - including secreted antibodies, complement proteins, and certain antimicrobial peptides - located in extracellular fluids. Humoral immunity is named so because it involves substances found in the humors, or body fluids. It contrasts with cell-mediated immunity. Humoral immunity is also referred to as antibody-mediated immunity.

Cell-mediated immunity is an immune response that does not involve antibodies. Rather, cell-mediated immunity is the activation of phagocytes, antigen-specific cytotoxic T-lymphocytes, and the release of various cytokines in response to an antigen.

Adaptive immune system Subsystem of the immune system that is composed of specialized, systemic cells and processes

The adaptive immune system, also known as the acquired immune system, is a subsystem of the immune system that is composed of specialized, systemic cells and processes that eliminate pathogens or prevent their growth. The acquired immune system is one of the two main immunity strategies found in vertebrates.

Pathogen-associated molecular patterns (PAMPs) are small molecular motifs conserved within a class of microbes. They are recognized by toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) in both plants and animals. A vast array of different types of molecules can serve as PAMPs, including glycans and glycoconjugates.

Innate immune system One of the two main immunity strategies

The innate, or nonspecific, immune system is one of the two main immunity strategies in vertebrates. The innate immune system is an older evolutionary defense strategy, relatively speaking, and is the dominant immune system response found in plants, fungi, insects, and primitive multicellular organisms.

TLR2 One of the toll-like receptors and plays a role in the immune system

Toll-like receptor 2 also known as TLR2 is a protein that in humans is encoded by the TLR2 gene. TLR2 has also been designated as CD282. TLR2 is one of the toll-like receptors and plays a role in the immune system. TLR2 is a membrane protein, a receptor, which is expressed on the surface of certain cells and recognizes foreign substances and passes on appropriate signals to the cells of the immune system.

In immunology, an adjuvant is a substance that increases or modulates the immune response to a vaccine. The word "adjuvant" comes from the Latin word adiuvare, meaning to help or aid. "An immunologic adjuvant is defined as any substance that acts to accelerate, prolong, or enhance antigen-specific immune responses when used in combination with specific vaccine antigens."

Priming is the first contact that antigen-specific T helper cell precursors have with an antigen. It is essential to the T helper cells' subsequent interaction with B cells to produce antibodies. Priming of antigen-specific naive lymphocytes occurs when antigen is presented to them in immunogenic form. Subsequently, the primed cells will differentiate either into effector cells or into memory cells that can mount stronger and faster response to second and upcoming immune challenges.

Protective autoimmunity is a condition in which cells of the adaptive immune system contribute to maintenance of the functional integrity of a tissue, or facilitate its repair following an insult. The term ‘protective autoimmunity’ was coined by Prof. Michal Schwartz of the Weizmann Institute of Science (Israel), whose pioneering studies were the first to demonstrate that autoimmune T lymphocytes can have a beneficial role in repair, following an injury to the central nervous system (CNS). Most of the studies on the phenomenon of protective autoimmunity were conducted in experimental settings of various CNS pathologies and thus reside within the scientific discipline of neuroimmunology.

Mucosal immunology

Mucosal immunology is the study of immune system responses that occur at mucosal membranes of the intestines, the urogenital tract, and the respiratory system. The mucous membranes are in constant contact with a large number of microorganisms, food, and inhaled air antigens. In healthy states, the mucosal immune system protects the organism against infectious pathogens but also maintains a tolerance towards non-harmful commensal microbes and benign environmental substances. Disruption of this balance between tolerance and deprivation of pathogens can lead to various pathological conditions such as food allergies, irritable bowel syndrome, susceptibility to infections, and more.

Immunomics is the study of immune system regulation and response to pathogens using genome-wide approaches. With the rise of genomic and proteomic technologies, scientists have been able to visualize biological networks and infer interrelationships between genes and/or proteins; recently, these technologies have been used to help better understand how the immune system functions and how it is regulated. Two thirds of the genome is active in one or more immune cell types and less than 1% of genes are uniquely expressed in a given type of cell. Therefore, it is critical that the expression patterns of these immune cell types be deciphered in the context of a network, and not as an individual, so that their roles be correctly characterized and related to one another. Defects of the immune system such as autoimmune diseases, immunodeficiency, and malignancies can benefit from genomic insights on pathological processes. For example, analyzing the systematic variation of gene expression can relate these patterns with specific diseases and gene networks important for immune functions.

Danger model

The danger model is a theory of how the immune system works. It is based on the idea that the immune system does not distinguish between self and non-self, but rather between things that might cause damage and things that will not.

Autoinflammatory diseases (AIDs) are a group of rare disorders caused by a dysfunction of the innate immune system.They are characterised by a perdiodic or chronic systemic inflammation usually without the involvement of adaptive immunity.

References

  1. Us D (April 2008). "[Cytokine storm in avian influenza]". Mikrobiyoloji Bulteni. 42 (2): 365–380. PMID   18697437.
  2. 1 2 Warrington R, Watson W, Kim HL, Antonetti FR (November 2011). "An introduction to immunology and immunopathology". Allergy, Asthma, and Clinical Immunology. 7 Suppl 1 (1): S1. doi:10.1186/1710-1492-7-S1-S1. PMC   3245432 . PMID   22165815.
  3. Iwasaki A, Medzhitov R (January 2010). "Regulation of adaptive immunity by the innate immune system". Science. 327 (5963): 291–295. doi:10.1126/science.1183021. PMC   3645875 . PMID   20075244.