Isospectral

Last updated

In mathematics, two linear operators are called isospectral or cospectral if they have the same spectrum. Roughly speaking, they are supposed to have the same sets of eigenvalues, when those are counted with multiplicity.

Contents

The theory of isospectral operators is markedly different depending on whether the space is finite or infinite dimensional. In finite-dimensions, one essentially deals with square matrices.

In infinite dimensions, the spectrum need not consist solely of isolated eigenvalues. However, the case of a compact operator on a Hilbert space (or Banach space) is still tractable, since the eigenvalues are at most countable with at most a single limit point λ = 0. The most studied isospectral problem in infinite dimensions is that of the Laplace operator on a domain in R2. Two such domains are called isospectral if their Laplacians are isospectral. The problem of inferring the geometrical properties of a domain from the spectrum of its Laplacian is often known as hearing the shape of a drum.

Finite dimensional spaces

In the case of operators on finite-dimensional vector spaces, for complex square matrices, the relation of being isospectral for two diagonalizable matrices is just similarity. This doesn't however reduce completely the interest of the concept, since we can have an isospectral family of matrices of shape A(t) = M(t)1AM(t) depending on a parameter t in a complicated way. This is an evolution of a matrix that happens inside one similarity class.

A fundamental insight in soliton theory was that the infinitesimal analogue of that equation, namely

A = [A, M] = AMMA

was behind the conservation laws that were responsible for keeping solitons from dissipating. That is, the preservation of spectrum was an interpretation of the conservation mechanism. The identification of so-called Lax pairs (P,L) giving rise to analogous equations, by Peter Lax, showed how linear machinery could explain the non-linear behaviour.

Isospectral manifolds

Two closed Riemannian manifolds are said to be isospectral if the eigenvalues of their Laplace–Beltrami operator (Laplacians), counted multiplicities, coincide. One of fundamental problems in spectral geometry is to ask to what extent the eigenvalues determine the geometry of a given manifold.

There are many examples of isospectral manifolds which are not isometric. The first example was given in 1964 by John Milnor. He constructed a pair of flat tori of 16 dimension, using arithmetic lattices first studied by Ernst Witt. After this example, many isospectral pairs in dimension two and higher were constructed (for instance, by M. F. Vignéras, A. Ikeda, H. Urakawa, C. Gordon). In particular Vignéras (1980), based on the Selberg trace formula for PSL(2,R) and PSL(2,C), constructed examples of isospectral, non-isometric closed hyperbolic 2-manifolds and 3-manifolds as quotients of hyperbolic 2-space and 3-space by arithmetic subgroups, constructed using quaternion algebras associated with quadratic extensions of the rationals by class field theory. [1] In this case Selberg's trace formula shows that the spectrum of the Laplacian fully determines the length spectrum[ citation needed ], the set of lengths of closed geodesics in each free homotopy class, along with the twist along the geodesic in the 3-dimensional case. [2]

In 1985 Toshikazu Sunada found a general method of construction based on a covering space technique, which, either in its original or certain generalized versions, came to be known as the Sunada method or Sunada construction. Like the previous methods it is based on the trace formula, via the Selberg zeta function. Sunada noticed that the method of constructing number fields with the same Dedekind zeta function could be adapted to compact manifolds. His method relies on the fact that if M is a finite covering of a compact Riemannian manifold M0 with G the finite group of deck transformations and H1, H2 are subgroups of G meeting each conjugacy class of G in the same number of elements, then the manifolds H1 \ M and H2 \ M are isospectral but not necessarily isometric. Although this does not recapture the arithmetic examples of Milnor and Vignéras[ citation needed ], Sunada's method yields many known examples of isospectral manifolds. It led C. Gordon, D. Webb and S. Wolpert to the discovery in 1991 of a counter example to Mark Kac's problem "Can one hear the shape of a drum?" An elementary treatment, based on Sunada's method, was later given in Buser et al. (1994).

Sunada's idea also stimulated the attempt to find isospectral examples which could not be obtained by his technique. Among many examples, the most striking one is a simply connected example of Schueth (1999). On the other hand, Alan Reid proved that certain isospectral arithmetic hyperbolic manifolds in are commensurable. [3]

See also

Notes

  1. Maclachlan & Reid 2003
  2. This amounts to knowing the conjugacy class of the corresponding group element in PSL(2,R) or PSL(2,C).
  3. Reid, Alan W. (1992). "Isospectrality and commensurability of arithmetic hyperbolic 2- and 3-manifolds". Duke Mathematical Journal. 65 (2). doi:10.1215/S0012-7094-92-06508-2.

Related Research Articles

<span class="mw-page-title-main">Riemann surface</span> One-dimensional complex manifold

In mathematics, particularly in complex analysis, a Riemann surface is a one-dimensional complex manifold.

In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics.

In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix.

In mathematics, a prime geodesic on a hyperbolic surface is a primitive closed geodesic, i.e. a geodesic which is a closed curve that traces out its image exactly once. Such geodesics are called prime geodesics because, among other things, they obey an asymptotic distribution law similar to the prime number theorem.

<span class="mw-page-title-main">Arithmetic group</span>

In mathematics, an arithmetic group is a group obtained as the integer points of an algebraic group, for example They arise naturally in the study of arithmetic properties of quadratic forms and other classical topics in number theory. They also give rise to very interesting examples of Riemannian manifolds and hence are objects of interest in differential geometry and topology. Finally, these two topics join in the theory of automorphic forms which is fundamental in modern number theory.

In mathematics, the Selberg trace formula, introduced by Selberg (1956), is an expression for the character of the unitary representation of a Lie group G on the space L2(Γ\G) of square-integrable functions, where Γ is a cofinite discrete group. The character is given by the trace of certain functions on G.

<span class="mw-page-title-main">Hearing the shape of a drum</span>

To hear the shape of a drum is to infer information about the shape of the drumhead from the sound it makes, i.e., from the list of overtones, via the use of mathematical theory.

<span class="mw-page-title-main">Kleinian group</span> Discrete group of Möbius transformations

In mathematics, a Kleinian group is a discrete subgroup of the group of orientation-preserving isometries of hyperbolic 3-space H3. The latter, identifiable with PSL(2, C), is the quotient group of the 2 by 2 complex matrices of determinant 1 by their center, which consists of the identity matrix and its product by −1. PSL(2, C) has a natural representation as orientation-preserving conformal transformations of the Riemann sphere, and as orientation-preserving conformal transformations of the open unit ball B3 in R3. The group of Möbius transformations is also related as the non-orientation-preserving isometry group of H3, PGL(2, C). So, a Kleinian group can be regarded as a discrete subgroup acting on one of these spaces.

In mathematics, a locally compact topological group G has property (T) if the trivial representation is an isolated point in its unitary dual equipped with the Fell topology. Informally, this means that if G acts unitarily on a Hilbert space and has "almost invariant vectors", then it has a nonzero invariant vector. The formal definition, introduced by David Kazhdan (1967), gives this a precise, quantitative meaning.

In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named after Pierre-Simon Laplace and Eugenio Beltrami.

In mathematics and theoretical physics, zeta function regularization is a type of regularization or summability method that assigns finite values to divergent sums or products, and in particular can be used to define determinants and traces of some self-adjoint operators. The technique is now commonly applied to problems in physics, but has its origins in attempts to give precise meanings to ill-conditioned sums appearing in number theory.

The Selberg zeta-function was introduced by Atle Selberg (1956). It is analogous to the famous Riemann zeta function

SL<sub>2</sub>(<b>R</b>) Group of real 2×2 matrices with unit determinant

In mathematics, the special linear group SL(2, R) or SL2(R) is the group of 2 × 2 real matrices with determinant one:

In mathematics, Reidemeister torsion is a topological invariant of manifolds introduced by Kurt Reidemeister for 3-manifolds and generalized to higher dimensions by Wolfgang Franz (1935) and Georges de Rham (1936). Analytic torsion is an invariant of Riemannian manifolds defined by Daniel B. Ray and Isadore M. Singer as an analytic analogue of Reidemeister torsion. Jeff Cheeger and Werner Müller (1978) proved Ray and Singer's conjecture that Reidemeister torsion and analytic torsion are the same for compact Riemannian manifolds.

Spectral geometry is a field in mathematics which concerns relationships between geometric structures of manifolds and spectra of canonically defined differential operators. The case of the Laplace–Beltrami operator on a closed Riemannian manifold has been most intensively studied, although other Laplace operators in differential geometry have also been examined. The field concerns itself with two kinds of questions: direct problems and inverse problems.

<span class="mw-page-title-main">Toshikazu Sunada</span> Japanese mathematician (born 1948)

Toshikazu Sunada is a Japanese mathematician and author of many books and essays on mathematics and mathematical sciences. He is professor emeritus of both Meiji University and Tohoku University. He is also distinguished professor of emeritus at Meiji in recognition of achievement over the course of an academic career. Before he joined Meiji University in 2003, he was professor of mathematics at Nagoya University (1988–1991), at the University of Tokyo (1991–1993), and at Tohoku University (1993–2003). Sunada was involved in the creation of the School of Interdisciplinary Mathematical Sciences at Meiji University and is its first dean (2013–2017). Since 2019, he is President of Mathematics Education Society of Japan.

In the mathematical field of differential geometry, the Paneitz operator is a fourth-order differential operator defined on a Riemannian manifold of dimension n. It is named after Stephen Paneitz, who discovered it in 1983, and whose preprint was later published posthumously in Paneitz 2008. In fact, the same operator was found earlier in the context of conformal supergravity by E. Fradkin and A. Tseytlin in 1982 (Phys Lett B 110 117 and Nucl Phys B 1982 157 ). It is given by the formula

<span class="mw-page-title-main">Carolyn S. Gordon</span> American mathematician

Carolyn S. Gordon is a mathematician and Benjamin Cheney Professor of Mathematics at Dartmouth College. She is most well known for giving a negative answer to the question "Can you hear the shape of a drum?" in her work with David Webb and Scott A. Wolpert. She is a Chauvenet Prize winner and a 2010 Noether Lecturer.

Arithmetic Fuchsian groups are a special class of Fuchsian groups constructed using orders in quaternion algebras. They are particular instances of arithmetic groups. The prototypical example of an arithmetic Fuchsian group is the modular group . They, and the hyperbolic surface associated to their action on the hyperbolic plane often exhibit particularly regular behaviour among Fuchsian groups and hyperbolic surfaces.

Jürg Peter Buser, known as Peter Buser, is a Swiss mathematician, specializing in differential geometry and global analysis.

References