Kuiper's test

Last updated

Kuiper's test is used in statistics to test that whether a data sample come from a given distribution (one-sample Kuiper test), or whether two data samples came from the same unknown distribution (two-sample Kuiper test). It is named after Dutch mathematician Nicolaas Kuiper. [1]

Contents

Kuiper's test is closely related to the better-known Kolmogorov–Smirnov test (or K-S test as it is often called). As with the K-S test, the discrepancy statistics D+ and D represent the absolute sizes of the most positive and most negative differences between the two cumulative distribution functions that are being compared. The trick with Kuiper's test is to use the quantity D+ + D as the test statistic. This small change makes Kuiper's test as sensitive in the tails as at the median and also makes it invariant under cyclic transformations of the independent variable. The Anderson–Darling test is another test that provides equal sensitivity at the tails as the median, but it does not provide the cyclic invariance.

This invariance under cyclic transformations makes Kuiper's test invaluable when testing for cyclic variations by time of year or day of the week or time of day, and more generally for testing the fit of, and differences between, circular probability distributions.

One-sample Kuiper test

Illustration of the two-sample Kuiper Test statistic. Red and blue lines each correspond to an empirical distribution function, and the black arrows show the points distances which sum to the Kuiper Statistic. KuiperTestVisualization 2Sample.png
Illustration of the two-sample Kuiper Test statistic. Red and blue lines each correspond to an empirical distribution function, and the black arrows show the points distances which sum to the Kuiper Statistic.

The one-sample test statistic, , for Kuiper's test is defined as follows. Let F be the continuous cumulative distribution function which is to be the null hypothesis. Denote by Fn the empirical distribution function for n independent and identically distributed (i.i.d.) observations Xi, which is defined as

where is the indicator function, equal to 1 if and equal to 0 otherwise.

Then the one-sided Kolmogorov–Smirnov statistic for the given cumulative distribution function F(x) is

where is the supremum function. And finally the one-sample Kuiper test is defined as,

or equivalently

where is the infimum function.

Tables for the critical points of the test statistic are available, [2] and these include certain cases where the distribution being tested is not fully known, so that parameters of the family of distributions are estimated.

The asymptotic distribution of the statistic is given by [1] ,

For , a reasonable approximation is obtained from the first term of the series as follows

Two-sample Kuiper test

The Kuiper test may also be used to test whether a pair of random samples, either on the real line or the circle coming from a common but unknown distribution. In this case, the Kuiper statistic is

where and are the empirical distribution functions of the first and the second sample respectively, is the supremum function, and is the infimum function.

Example

We could test the hypothesis that computers fail more during some times of the year than others. To test this, we would collect the dates on which the test set of computers had failed and build an empirical distribution function. The null hypothesis is that the failures are uniformly distributed. Kuiper's statistic does not change if we change the beginning of the year and does not require that we bin failures into months or the like. [1] [3] Another test statistic having this property is the Watson statistic, [3] [4] which is related to the Cramér–von Mises test.

However, if failures occur mostly on weekends, many uniform-distribution tests such as K-S and Kuiper would miss this, since weekends are spread throughout the year. This inability to distinguish distributions with a comb-like shape from continuous uniform distributions is a key problem with all statistics based on a variant of the K-S test. Kuiper's test, applied to the event times modulo one week, is able to detect such a pattern. Using event times that have been modulated with the K-S test can result in different results depending on how the data is phased. In this example, the K-S test may detect the non-uniformity if the data is set to start the week on Saturday, but fail to detect the non-uniformity if the week starts on Wednesday.

See also

Related Research Articles

<span class="mw-page-title-main">Cumulative distribution function</span> Probability that random variable X is less than or equal to x

In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable , or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .

<span class="mw-page-title-main">Kolmogorov–Smirnov test</span> Non-parametric statistical test between two distributions

In statistics, the Kolmogorov–Smirnov test is a nonparametric test of the equality of continuous, one-dimensional probability distributions that can be used to test whether a sample came from a given reference probability distribution, or to test whether two samples came from the same distribution. Intuitively, the test provides a method to qualitatively answer the question "How likely is it that we would see a collection of samples like this if they were drawn from that probability distribution?" or, in the second case, "How likely is it that we would see two sets of samples like this if they were drawn from the same probability distribution?". It is named after Andrey Kolmogorov and Nikolai Smirnov.

In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.

<span class="mw-page-title-main">Student's t-distribution</span> Probability distribution

In probability and statistics, Student's t distribution is a continuous probability distribution that generalizes the standard normal distribution. Like the latter, it is symmetric around zero and bell-shaped.

<span class="mw-page-title-main">Law of the iterated logarithm</span>

In probability theory, the law of the iterated logarithm describes the magnitude of the fluctuations of a random walk. The original statement of the law of the iterated logarithm is due to A. Ya. Khinchin (1924). Another statement was given by A. N. Kolmogorov in 1929.

<span class="mw-page-title-main">Total variation distance of probability measures</span> Concept in probability theory

In probability theory, the total variation distance is a distance measure for probability distributions. It is an example of a statistical distance metric, and is sometimes called the statistical distance, statistical difference or variational distance.

<span class="mw-page-title-main">Directional statistics</span>

Directional statistics is the subdiscipline of statistics that deals with directions, axes or rotations in Rn. More generally, directional statistics deals with observations on compact Riemannian manifolds including the Stiefel manifold.

<span class="mw-page-title-main">Empirical distribution function</span> Distribution function associated with the empirical measure of a sample

In statistics, an empirical distribution function is the distribution function associated with the empirical measure of a sample. This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified value of the measured variable is the fraction of observations of the measured variable that are less than or equal to the specified value.

Noncentral <i>t</i>-distribution Probability distribution

The noncentral t-distribution generalizes Student's t-distribution using a noncentrality parameter. Whereas the central probability distribution describes how a test statistic t is distributed when the difference tested is null, the noncentral distribution describes how t is distributed when the null is false. This leads to its use in statistics, especially calculating statistical power. The noncentral t-distribution is also known as the singly noncentral t-distribution, and in addition to its primary use in statistical inference, is also used in robust modeling for data.

The Anderson–Darling test is a statistical test of whether a given sample of data is drawn from a given probability distribution. In its basic form, the test assumes that there are no parameters to be estimated in the distribution being tested, in which case the test and its set of critical values is distribution-free. However, the test is most often used in contexts where a family of distributions is being tested, in which case the parameters of that family need to be estimated and account must be taken of this in adjusting either the test-statistic or its critical values. When applied to testing whether a normal distribution adequately describes a set of data, it is one of the most powerful statistical tools for detecting most departures from normality. K-sample Anderson–Darling tests are available for testing whether several collections of observations can be modelled as coming from a single population, where the distribution function does not have to be specified.

In probability theory, an empirical process is a stochastic process that characterizes the deviation of the empirical distribution function from its expectation. In mean field theory, limit theorems are considered and generalise the central limit theorem for empirical measures. Applications of the theory of empirical processes arise in non-parametric statistics.

<span class="mw-page-title-main">Donsker's theorem</span> Statement in probability theory

In probability theory, Donsker's theorem, named after Monroe D. Donsker, is a functional extension of the central limit theorem for empirical distribution functions. Specifically, the theorem states that an appropriately centered and scaled version of the empirical distribution function converges to a Gaussian process.

In statistics the Cramér–von Mises criterion is a criterion used for judging the goodness of fit of a cumulative distribution function compared to a given empirical distribution function , or for comparing two empirical distributions. It is also used as a part of other algorithms, such as minimum distance estimation. It is defined as

<span class="mw-page-title-main">Dvoretzky–Kiefer–Wolfowitz inequality</span> Statistical inequality

In the theory of probability and statistics, the Dvoretzky–Kiefer–Wolfowitz–Massart inequality provides a bound on the worst case distance of an empirically determined distribution function from its associated population distribution function. It is named after Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz, who in 1956 proved the inequality

In probability theory, the probability integral transform relates to the result that data values that are modeled as being random variables from any given continuous distribution can be converted to random variables having a standard uniform distribution. This holds exactly provided that the distribution being used is the true distribution of the random variables; if the distribution is one fitted to the data, the result will hold approximately in large samples.

<span class="mw-page-title-main">Studentized range distribution</span>

In probability and statistics, studentized range distribution is the continuous probability distribution of the studentized range of an i.i.d. sample from a normally distributed population.

In statistics, the Khmaladze transformation is a mathematical tool used in constructing convenient goodness of fit tests for hypothetical distribution functions. More precisely, suppose are i.i.d., possibly multi-dimensional, random observations generated from an unknown probability distribution. A classical problem in statistics is to decide how well a given hypothetical distribution function , or a given hypothetical parametric family of distribution functions , fits the set of observations. The Khmaladze transformation allows us to construct goodness of fit tests with desirable properties. It is named after Estate V. Khmaladze.

Minimum-distance estimation (MDE) is a conceptual method for fitting a statistical model to data, usually the empirical distribution. Often-used estimators such as ordinary least squares can be thought of as special cases of minimum-distance estimation.

In probability theory and statistics, the Dirichlet process (DP) is one of the most popular Bayesian nonparametric models. It was introduced by Thomas Ferguson as a prior over probability distributions.

The ratio of uniforms is a method initially proposed by Kinderman and Monahan in 1977 for pseudo-random number sampling, that is, for drawing random samples from a statistical distribution. Like rejection sampling and inverse transform sampling, it is an exact simulation method. The basic idea of the method is to use a change of variables to create a bounded set, which can then be sampled uniformly to generate random variables following the original distribution. One feature of this method is that the distribution to sample is only required to be known up to an unknown multiplicative factor, a common situation in computational statistics and statistical physics.

References

  1. 1 2 3 Kuiper, N. H. (1960). "Tests concerning random points on a circle". Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series A. 63: 38–47.
  2. Pearson, E.S., Hartley, H.O. (1972) Biometrika Tables for Statisticians, Volume 2, CUP. ISBN   0-521-06937-8 (Table 54)
  3. 1 2 Watson, G.S. (1961) "Goodness-Of-Fit Tests on a Circle", Biometrika , 48 (1/2), 109–114 JSTOR   2333135
  4. Pearson, E.S., Hartley, H.O. (1972) Biometrika Tables for Statisticians, Volume 2, CUP. ISBN   0-521-06937-8 (Page 118)