Line level

Last updated

Line level is the specified strength of an audio signal used to transmit analog audio between components such as CD and DVD players, television sets, audio amplifiers, and mixing consoles.

Contents

Line level sits between other levels of audio signals. There are weaker signals such as those from microphones (microphone level or mic level) and instrument pickups (instrument level), and stronger signals, such as those used to drive headphones and loudspeakers (speaker level). The strength of these various signals does not necessarily refer to the output voltage of the source device; it also depends on its output impedance and output power capability.

Consumer electronic devices concerned with audio (for example sound cards) often have a connector labeled line in and/or line out. Line out provides an audio signal output and line in receives a signal input.

The line in/out connections on consumer-oriented audio equipment are typically unbalanced, and connected with stereo RCA jacks, or with a 3.5 mm (18 in) 3-conductor TRS minijack connector providing ground, left channel, and right channel.

Professional equipment commonly uses balanced connections on 6.35 mm (14 in) TRS phone jacks or XLR connectors. Professional equipment may also use unbalanced connections with 6.35 mm (14 in) TS phone jacks.

Nominal levels

Voltage vs. time of sine waves at reference and line levels, with VRMS, VPK, and VPP marked for the +4dBu line level. Line levels.svg
Voltage vs. time of sine waves at reference and line levels, with VRMS, VPK, and VPP marked for the +4dBu line level.

A line level describes a line's nominal signal level as a ratio, expressed in decibels, against a standard reference voltage. The nominal level and the reference voltage against which it is expressed depend on the line level being used. While the nominal levels themselves vary, only two reference voltages are common: decibel volts (dBV) for consumer applications, and decibels unloaded (dBu) for professional applications.

The decibel volt reference voltage is 1 VRMS = 0 dBV. [1] The decibel unloaded reference voltage, 0 dBu, is the AC voltage required to produce 1 mW of power across a 600 Ω impedance (approximately 0.7746 VRMS). [2] This awkward unit is a holdover from the early telephone standards, which used 600 Ω sources and loads, and measured dissipated power in decibel-milliwatts (dBm). Modern audio equipment does not use 600 Ω matched loads, hence dBm unloaded (dBu).

The most common nominal level for professional equipment is +4 dBu (by convention, decibel values are written with an explicit sign symbol). For consumer equipment, a convention exists of −10 dBV, originally intended to reduce manufacturing costs. [3] However, consumer equipment may not necessarily follow that convention. For example, a standard CD-player output voltage has emerged of around 2 VRMS, equivalent to +6 dBV. Such higher output levels allow the CD player to bypass a preamp stage. [4]

Expressed in absolute terms, a signal at −10 dBV is equivalent to a sine wave signal with a peak amplitude (VPK) of approximately 0.447 volts, or any general signal at 0.316 volts root mean square (VRMS). A signal at +4 dBu is equivalent to a sine wave signal with a peak amplitude of approximately 1.736 volts, or any general signal at approximately 1.228 VRMS.

Peak-to-peak (sometimes abbreviated as p-p) amplitude (VPP) refers to the total voltage swing of a signal, which is double the peak amplitude of the signal. For instance, a signal with a peak amplitude of ±0.5 V has a p-p amplitude of 1.0 V.

Line levels and their approximate nominal voltage levels
UseNominal levelNominal level, VRMSPeak amplitude, VPKPeak-to-peak amplitude, VPP
Professional audio+4 dBu1.2281.7363.472
Consumer audio−10 dBV0.3160.4470.894

The line level signal is an alternating current signal without a DC offset, meaning that its voltage varies with respect to signal ground from the peak amplitude (for example +1.5 V) to the equivalent negative voltage (−1.5 V). [5]

Impedances

A line driver is typically used to drive line-level analog signal outputs. [6] As cables between line output and line input are generally extremely short compared to the audio signal wavelength in the cable, transmission line effects can be disregarded and impedance matching need not be used. Instead, line-level circuits use the impedance bridging principle, in which a low-impedance output drives a high-impedance input. A typical line-out connection has an output impedance from 100 to 600 Ω, with lower values being more common in newer equipment. Line inputs present a much higher impedance, typically 10 kΩ or more. [7]

The two impedances form a voltage divider with a shunt element that is large relative to the size of the series element, which ensures that little of the signal is shunted to ground and that current requirements are minimized. Most of the voltage asserted by the output appears across the input impedance and almost none of the voltage is dropped across the output. [7] The line input acts similarly to a high-impedance voltmeter or oscilloscope input, measuring the voltage asserted by the output while drawing minimal current (and hence minimal power) from the source. The high impedance of the line in the circuit does not load down the output of the source device.

These are voltage signals (as opposed to current signals) and it is the signal information (voltage) that is desired, not power to drive a transducer, such as a speaker or antenna. The actual information that is exchanged between the devices is the variance in voltage; it is this alternating voltage signal that conveys the information, making the current irrelevant.

Line out

Line out symbol.svg    Line waves03-0-out.png    Line waves03-1-out.png    Line circle out.png    Line-out symbol. PC Guide color   lime green.

Line outputs (line out) usually present a source impedance of 100 to 600 ohms. The voltage can reach 2 volts peak-to-peak with levels referenced to −10 dBV (300 mV) at 10 kΩ. The frequency response of most modern equipment is advertised as at least 20 Hz to 20 kHz, which corresponds to the conventional range of human hearing. Line outputs are intended to drive a load impedance of 10 kΩ, which even at line out's highest voltages only requires a negligible current (well under a milliamp).

Connecting other devices

Connecting a low-impedance load such as a loudspeaker (usually 4 to 8 Ω) to a line out will essentially short circuit the output circuit. Such loads are around 11000 the impedance a line out is designed to drive, so the line out is usually not designed to source the current that would be drawn by a 4 to 8 Ω load at normal line out signal voltages. The result will be very weak sound from the speaker and possibly a damaged line-out circuit.

Headphone outputs and line outputs are sometimes confused. Different make and model headphones have widely varying impedances, from as little as 20 Ω to a few hundred ohms; the lowest of these will have results similar to a speaker, while the highest may work acceptably if the line out impedance is low enough and the headphones are sensitive enough.

Conversely, a headphone output generally has a source impedance of only a few ohms (to provide a bridging connection with 32 Ω headphones) and will easily drive a line input.

For similar reasons, wye-cables (or Y-splitters) should not be used to combine two line-out signals into a single line in. Each line output would be driving the other line output as well as the intended input, again resulting in a much heavier load than designed for. This will result in signal loss and possibly even damage. An active mixer, using for example op-amps, should be used instead. [8] A large resistor in series with each output can be used to safely mix them together, but must be appropriately designed for the load impedance and cable length.

Line in

Line in symbol.svg    Line waves03-2-in.png    Line waves03-3-in.png    Line circle in.png    Line-in symbol. PC Guide color   light blue.

Line inputs (line in) are designed to accept voltage levels in the range provided by line outputs. It is intended by designers that the line out of one device be connected to the line input of another. Impedances, on the other hand, are deliberately not matched from output to input. The impedance of a line input is typically around 10 kΩ. When driven by a line output's usual low impedance of 100 to 600 ohms, this forms a bridging connection in which most of the voltage generated by the source (the output) is dropped across the load (the input), and minimal current flows due to the load's relatively high impedance.

Although line inputs have a high impedance compared to that of line outputs, they should not be confused with so-called Hi-Z inputs (Z being the symbol for impedance) which have an impedance of 47 kΩ to over 1 MΩ. These Hi-Z or instrument inputs generally have higher gain than a line input. They are designed to be used with, for example, electric guitar pickups and direct input boxes. Some of these sources can provide only minimal voltage and current and the high impedance input is designed to not load them excessively.

Line level in traditional signal paths

Acoustic sounds (such as voices or musical instruments) are often recorded with transducers (microphones and pickups) that produce weak electrical signals. These signals must be amplified to line level, where they are more easily manipulated by other devices such as mixing consoles and tape recorders. Such amplification is performed by a device known as a preamplifier or preamp, which boosts the signal to line level. After manipulation at line level, signals are then typically sent to a power amplifier, where they are amplified to levels that can drive headphones or loudspeakers. These convert the signals back into sounds that can be heard through the air.

Most phonograph cartridges also have a low output level and require a preamp; typically, a home stereo integrated amplifier or receiver will have a special phono input. This input passes the signal through a phono preamp, which applies RIAA equalization to the signal as well as boosting it to line level.

See also

Related Research Articles

In electronics, the figures of merit of an amplifier are numerical measures that characterize its properties and performance. Figures of merit can be given as a list of specifications that include properties such as gain, bandwidth, noise and linearity, among others listed in this article. Figures of merit are important for determining the suitability of a particular amplifier for an intended use.

The decibel is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a power or root-power quantity on a logarithmic scale. Two signals whose levels differ by one decibel have a power ratio of 101/10 or root-power ratio of 10120.

<span class="mw-page-title-main">Amplifier</span> Electronic device/component that increases the strength of a signal

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is defined as a circuit that has a power gain greater than one.

dBm or dBmW (decibel-milliwatts) is a unit of level used to indicate that a power level is expressed in decibels (dB) with reference to one milliwatt (mW). It is used in radio, microwave and fiber-optical communication networks as a convenient measure of absolute power because of its capability to express both very large and very small values in a short form. dBW is a similar unit, referenced to one watt (1,000 mW).

<span class="mw-page-title-main">Gain (electronics)</span> Ability of a circuit to increase the power or amplitude of a signal

In electronics, gain is a measure of the ability of a two-port circuit to increase the power or amplitude of a signal from the input to the output port by adding energy converted from some power supply to the signal. It is usually defined as the mean ratio of the signal amplitude or power at the output port to the amplitude or power at the input port. It is often expressed using the logarithmic decibel (dB) units. A gain greater than one, that is, amplification, is the defining property of an active component or circuit, while a passive circuit will have a gain of less than one.

Balanced audio is a method of interconnecting audio equipment using balanced interfaces. This type of connection is very important in sound recording and production because it allows the use of long cables while reducing susceptibility to external noise caused by electromagnetic interference. The balanced interface guarantees that induced noise appears as common-mode voltages at the receiver which can be rejected by a differential device.

<span class="mw-page-title-main">Audio system measurements</span> Means of quantifying system performance

Audio system measurements are a means of quantifying system performance. These measurements are made for several purposes. Designers take measurements so that they can specify the performance of a piece of equipment. Maintenance engineers make them to ensure equipment is still working to specification, or to ensure that the cumulative defects of an audio path are within limits considered acceptable. Audio system measurements often accommodate psychoacoustic principles to measure the system in a way that relates to human hearing.

<span class="mw-page-title-main">DI unit</span> Audio signal conversion device

A DI unit is an electronic device typically used in recording studios and in sound reinforcement systems to connect a high-output impedance, line level, unbalanced output signal to a low-impedance, microphone level, balanced input, usually via an XLR connector and XLR cable. DIs are frequently used to connect an electric guitar or electric bass to a mixing console's microphone input jack. The DI performs level matching, balancing, and either active buffering or passive impedance matching/impedance bridging to minimize unwanted noise, distortion, and ground loops. DI units are typically metal boxes with input and output jacks and, for more expensive units, “ground lift” and attenuator switches.

<span class="mw-page-title-main">VU meter</span> Audio signal level measurement device

A volume unit (VU) meter or standard volume indicator (SVI) is a device displaying a representation of the signal level in audio equipment.

dBFS Unit of measurement for amplitude levels in digital systems

Decibels relative to full scale is a unit of measurement for amplitude levels in digital systems, such as pulse-code modulation (PCM), which have a defined maximum peak level. The unit is similar to the units dBov and decibels relative to overload (dBO).

<span class="mw-page-title-main">Headphone amplifier</span>

A headphone amplifier is a low-powered audio amplifier designed particularly to drive headphones worn on or in the ears, instead of loudspeakers in speaker enclosures. Most commonly, headphone amplifiers are found embedded in electronic devices that have a headphone jack, such as integrated amplifiers, portable music players, and televisions. However, standalone units are used, especially in audiophile markets and in professional audio applications, such as music studios. Headphone amplifiers are available in consumer-grade models used by hi-fi enthusiasts and audiophiles and professional audio models, which are used in recording studios.

Multiple electronic amplifiers can be connected such that they drive a single floating load (bridge) or a single common load (parallel), to increase the amount of power available in different situations. This is commonly encountered in audio applications.

<span class="mw-page-title-main">Clipping (audio)</span> Form of waveform distortion

Clipping is a form of waveform distortion that occurs when an amplifier is overdriven and attempts to deliver an output voltage or current beyond its maximum capability. Driving an amplifier into clipping may cause it to output power in excess of its power rating.

dBm0 is an abbreviation for the power in dBm measured at a zero transmission level point (ZLP).

Ripple in electronics is the residual periodic variation of the DC voltage within a power supply which has been derived from an alternating current (AC) source. This ripple is due to incomplete suppression of the alternating waveform after rectification. Ripple voltage originates as the output of a rectifier or from generation and commutation of DC power.

<span class="mw-page-title-main">Valve RF amplifier</span> Device for electrically amplifying the power of an electrical radio frequency signal

A valve RF amplifier or tube amplifier (U.S.) is a device for electrically amplifying the power of an electrical radio frequency signal.

The term microphone preamplifier can either refer to the electronic circuitry within a microphone, or to a separate device or circuit that the microphone is connected to. In either instance, the purpose of the microphone preamplifier is the same.

Technical specifications and detailed information on the valve audio amplifier, including its development history.

<span class="mw-page-title-main">Constant-voltage speaker system</span>

Constant-voltage speaker systems refer to networks of loudspeakers which are connected to an audio amplifier using step-up and step-down transformers to simplify impedance calculations and to minimize power loss over the speaker cables. They are more appropriately called high-voltage audio distribution systems. The voltage is constant only in the sense that at full power, the voltage in the system does not depend on the number of speakers driven. Constant-voltage speaker systems are also commonly referred to as 25-, 70-, 70.7-, or 100-volt speaker systems; distributed speaker systems; or high-impedance speaker systems. In Canada and the US, they are most commonly referred to as 70-volt speakers. In Europe, the 100 V system is the most widespread, with amplifier and speaker products being simply labeled with 100 V.

<span class="mw-page-title-main">Audio analyzer</span> Test and measurement instrument

An audio analyzer is a test and measurement instrument used to objectively quantify the audio performance of electronic and electro-acoustical devices. Audio quality metrics cover a wide variety of parameters, including level, gain, noise, harmonic and intermodulation distortion, frequency response, relative phase of signals, interchannel crosstalk, and more. In addition, many manufacturers have requirements for behavior and connectivity of audio devices that require specific tests and confirmations.

References

  1. Tangible Tech Audio Basics
  2. Glenn M. Ballou, ed. (1998). Handbook for Sound Engineers: The New Audio Cyclopedia, Second Edition. Focal Press. p. 761. ISBN   0-240-80331-0.
  3. Winer, Ethan (2013). The Audio Expert: Everything You Need to Know About Audio. Focal Press. p. 107. ISBN   978-0-240-82100-9.
  4. Robert Harley (March 29, 1995). "Quality Lies in the Details". Stereophile. p. 2.
  5. Oscilloscoped measurement for line level signal
  6. Bishop, Owen (2011). Electronics - Circuits and Systems. Routledge. p. 250. ISBN   9781136440434 . Retrieved 18 April 2016.
  7. 1 2 Dennis Bohn (May 1996). "Practical Line-Driving Current Requirements". RaneNotes. Rane Corporation. Retrieved 2022-01-12. Practically speaking, electrical engineering transmission line theory does not apply to real world audio lines. ... This paves the way for simple R-C modeling of our audio line.
  8. Dennis Bohn (April 2004). "Why Not Wye?". RaneNotes. Rane Corporation. Retrieved 2012-07-15. Outputs are low impedance and must only be connected to high impedance inputs -- never, never tie two outputs directly together -- never. If you do, then each output tries to drive the very low impedance of the other, forcing both outputs into current-limit and possible damage. As a minimum, severe signal loss results.