List of organisms by chromosome count

Last updated

The list of organisms by chromosome count describes ploidy or numbers of chromosomes in the cells of various plants, animals, protists, and other living organisms. This number, along with the visual appearance of the chromosome, is known as the karyotype, [1] [2] [3] and can be found by looking at the chromosomes through a microscope. Attention is paid to their length, the position of the centromeres, banding pattern, any differences between the sex chromosomes, and any other physical characteristics. [4] The preparation and study of karyotypes is part of cytogenetics.

Contents

   Animals
   Plants
  Other Eukaryotes
S. No.Organism
(B SULLAR)
Chromosome numberPictureKaryotypeNotesSource
1 Jack jumper ant
(Myrmecia pilosula)
2/1 Myrmecia.pilosula.jpg 2 for females, males are haploid and thus have 1; smallest number possible. Other ant species have more chromosomes. [5] [5]
2 Spider mite
(Tetranychidae)
4–14 Tetranychus urticae with silk threads.jpg Spider mites (family Tetranychidae) are typically haplodiploid (males are haploid, while females are diploid) [6] [6]
3 Cricotopus sylvestris 4 Cricotopus sp. sylvestris group female Bytom.jpg [7]
4 Oikopleura dioica 6 Oikopleura dioica 2.jpg [8]
5 Yellow fever mosquito
(Aedes aegypti)
6 Aedes aegypti.jpg Yellow Fever Mosquito (Aedes aegypti) chromosomes.png The 2n=6 chromosome number is conserved in the entire family Culicidae, except in Chagasia bathana , which has 2n=8. [9] [9]
6 Indian muntjac
(Muntiacus muntjak)
6/7 Muntjac deer.JPG Karyotype of Indian muntjac (Muntiacus muntjak).png 2n = 6 for females and 7 for males. The lowest diploid chromosomal number in mammals. [10] [11]
7 Hieracium 8 Yellow Hawkweed.jpg
8Fruit fly
( Drosophila melanogaster )
8 Drosophila melanogaster - side (aka).jpg Drosophila metaphase chromosomes female.png 6 autosomal and 2 allosomic (sex) [12]
9 Macrostomum lignano 8 Macrostomum lignano.jpg Karyotype of Macrostomum lignano.png [13]
10 Marchantia polymorpha 9 Moos 5772.jpg Marchantia polymorpha male karyotype.jpg Typically haploid with dominant gametophyte stage. 8 autosomes and 1 allosome (sex chromosome). The sex-determination system used by this species and most other bryophytes is called UV. Spores can carry either the U chromosome, which results in female gametophytes, or the V chromosome, which results in males. The chromosome number n = 9 is the basic number in many species of Marchantiales. In some species of Marchantiales, plants with various ploidy levels (having 18 or 27 chromosomes) were reported, but this is rare in nature. [14]
11 Thale cress
(Arabidopsis thaliana)
10 Arabidopsis thaliana.jpg Karyotype of Thale cress (Arabidopsis thaliana).png
12 Swamp wallaby
(Wallabia bicolor)
10/11 Image-Swamp-Wallaby-Feeding-4,-Vic,-Jan.2008.jpg Karyotype of swamp wallaby (Wallabia bicolor).png 11 for male, 10 for female [15]
13Australian daisy
( Brachyscome dichromosomatica)
12 Brachyscome iberidifolia1.jpg This species can have more B chromosomes than A chromosomes at times, but 2n=4. [16]
14 Nematode
( Caenorhabditis elegans )
12/11 Adult Caenorhabditis elegans.jpg Karyotype of Caenorhabditis elegans.png 12 for hermaphrodites, 11 for males
15 Spinach
(Spinacia oleracea)
12 Wurzelspinat02.jpg Karyotype of Spinach (Spinacia oleracea L. Mazeran).png [17]
16 Broad bean
(Vicia faba)
12 Fava beans 1.jpg Karyotype of Broad bean (Vicia faba).png [18]
17 Yellow dung fly
(Scathophaga stercoraria)
12 Fliege9012.JPG Karyotype of female yellow dung fly (Scathophaga stercoraria).png 10 autosomal and 2 allosomic (sex) chromosomes. Males have XY sex chromosomes and females have XX sex chromosomes. The sex chromosomes are the largest chromosomes and constitute 30% of the total length of the diploid set in females and about 25% in males. [19] [19]
18 Slime mold
( Dictyostelium discoideum )
12 Dictyostelium Fruiting Bodies.JPG [20]
19 Cucumber
(Cucumis sativus)
14 Komkommer plant.jpg Karyotype of cucumber (Cucumis sativus).png [21]
20 Tasmanian devil
(Sarcophilus harrisii)
14 Sarcophilus harrisii taranna.jpg Karyotype of Tasmanian devil (Sarcophilus Harrisii).png
21 Rye
(Secale cereale)
14 Rye Mature Grain Summer.jpg Karyotype of Austrian rye (Secale cereale).png [22]
22 Pea
(Pisum sativum)
14 Peas in pods - Studio.jpg Karyotype of pea (Pisum sativum).png [22]
23 Barley
(Hordeum vulgare)
14 Hordeum-barley.jpg Karyotype of barley (Hordeum vulgare).png [23]
24 Aloe vera 14 Aloe vera 1.jpg Karyotype of Aloe vera.png The diploid chromosome number is 2n = 14 with four pair of long acrocentric chromosomes ranging from 14.4 μm to 17.9 μm and three pair of short sub metacentric chromosomes ranging from 4.6 μm to 5.4 μm. [24] [24]
25 Koala
(Phascolarctos cinereus)
16 Koala climbing tree.jpg
26 Kangaroo 16 Macropus robustus2.jpg Karyotype of wallaroo (Macropus robustus).png This includes several members of genus Macropus , but not the red kangaroo (M. rufus, 20) [25]
27 Botryllus schlosseri 16 Botryllus schlosseri.jpg [26]
28 Schistosoma mansoni 16 Schistosoma mansoni trematodes.jpg Karyotype of Schistosoma mansoni.png 2n=16. 7 autosomal pairs and ZW sex-determination pair. [27] [27]
29 Welsh onion
(Allium fistulosum)
16 Spring Onion.jpg DAPI stained Welsh onion (Allium fistulosum) chromosomes.png [28]
30 Garlic
(Allium sativum)
16 All Garlic Ail Ajo.jpg Karyotype of garlic (Allium sativum).png [28]
31 Itch mite
(Sarcoptes scabiei)
17/18 Sarcoptes scabei 2.jpg Chromosomal spreads of single itch mite (Sarcoptes scabiei) cell - 17 chromosomes.png According to the observation of embryonic cells of egg, chromosome number of the itch mite is either 17 or 18. While the cause for the disparate numbers is unknown, it may arise because of an XO sex determination mechanism, where males (2n=17) lack the sex chromosome and therefore have one less chromosome than the female (2n=18). [29] [29]
32 Radish
(Raphanus sativus)
18 Raphanus sativus subsp. sativus, radijs (1).jpg Karyotype of radish (Raphanus sativus).png [22]
33 Carrot
( Daucus carota )
18 Baby carrots - jules.jpg Karyotype of carrot (Daucus carota).png The genus Daucus includes around 25 species. D. carota has nine chromosome pairs (2n = 2x = 18). D. capillifolius, D. sahariensis and D. syrticus are the other members of the genus with 2n = 18, whereas D. muricatus (2n = 20) and D. pusillus (2n = 22) have a slightly higher chromosome number. A few polyploid species as for example D. glochidiatus (2n = 4x = 44) and D. montanus (2n = 6x = 66) also exist. [30] [30]
34 Cabbage
(Brassica oleracea)
18 Choux 02.jpg Karyotype of Brussels sprout (Brassica oleracea var. gemmifera).png Broccoli, cabbage, kale, kohlrabi, brussels sprouts, and cauliflower are all the same species and have the same chromosome number. [22] [22]
35 Citrus
(Citrus)
18 Lemon, Lime and Orange.jpg Karyotype of Lemon (Citrus limon).png Chromosome number of the genus Citrus , which including lemons, oranges, grapefruit, pomelo and limes, is 2n = 18. [31] [32]
36 Passion fruit
(Passiflora edulis)
18 Passionfruit and cross section.jpg Karyotype of passion fruit (Passiflora edulis).png [33]
37 Setaria viridis
(Setaria viridis)
18 enokorogusaSetaria viridis (L.) P.Beauv.P9130041.JPG Karyotype of Setaria viridis.png [34]
38 Maize
(Zea mays)
20 Klip kukuruza uzgojen u Medimurju (Croatia).JPG C-banded karyograms of Maize.png [22]
39 Cannabis
( Cannabis sativa )
20 Cannabis sativa leaf.jpg Karyotype of Hemp (Cannabis sativa).png
40 Western clawed frog
(Xenopus tropicalis)
20 Xenopus tropicalis02.jpeg Karyotype of Western clawed frog (Xenopus (Silurana) tropicalis).png [35]
41 Australian pitcher plant
(Cephalotus follicularis)
20 Cephalotus follicularis 002.jpg [36]
42 Cacao
(Theobroma cacao)
20 Matadecacao.jpg Karyotype of cacao.png [37]
43 Eucalyptus
(Eucalyptus)
22 700 yr red river gum02.jpg Karyotype of river red gum (Eucalyptus camaldulensis).png Although some contradictory cases have been reported, the large homogeneity of the chromosome number 2n = 22 is now known for 135 (33.5%) distinct species among genus Eucalyptus . [38] [39]
44 Virginia opossum
(Didelphis virginiana)
22 Opossum 2.jpg [40]
45 Bean
(Phaseolus sp.)
22 Phaseolus vulgaris MHNT.BOT.2016.24.73.jpg Karyotype of Common bean (Phaseolus vulgaris).png All species in the genus Phaseolus have the same chromosome number, including common bean (P. vulgaris), runner bean (P. coccineus), tepary bean (P. acutifolius) and lima bean (P. lunatus). [22] [22]
46 Snail 24 Grapevinesnail 01.jpg
47 Melon
(Cucumis melo)
24 Cucumis melo 34.jpg Karyotype of melon (Cucumis melo L.).png [41]
48 Rice
(Oryza sativa)
24 US long grain rice.jpg Karyotype of rice (Oryza sativa).png [22]
49 Silverleaf nightshade
(Solanum elaeagnifolium)
24 Solanum elaeagnifolium.jpg [42]
50 Sweet chestnut
(Castanea sativa)
24 Frucht der Edelkastanie.jpg Karyotype of Sweet chestnut (Castanea sativa).png [43]
51 Tomato
(Solanum lycopersicum)
24 Bright red tomato and cross section02.jpg Karyotype of tomato (Solanum lycopersicum).png [44]
52 European beech
(Fagus sylvatica)
24 Hayedomasaustral.jpg Karyotype of European beech (Fagus sylvatica).png [45]
53 Bittersweet nightshade
(Solanum dulcamara)
24 SolanumDulcamara-bloem-sm.jpg [46] [47]
54 Cork oak
(Quercus suber)
24 ChampagneCorksLarge.jpg Karyotype of Cork oak (Quercus suber).png [48]
55 Edible frog
(Pelophylax kl. esculentus)
26 Rana esculenta on Nymphaea edit.JPG Karyotype of Edible frog (Pelophylax esculentus).png Edible frog is the fertile hybrid of the pool frog and the marsh frog. [49] [50]
56 Axolotl
(Ambystoma mexicanum)
28 AxolotlBE.jpg Karyotype of axolotl (Ambystoma mexicanum).png [51]
57 Bed bug
(Cimex lectularius)
29–47 Bedbug004.jpg Karyotype of male bed bug (Cimex lectularius).png 26 autosomes and varying number of the sex chromosomes from three (X1X2Y) to 21 (X1X2Y+18 extra Xs). [52] [52]
58 Pill millipede
(Arthrosphaera magna attems)
30 Pillmillipede talakaveri.jpg [53]
59 Giraffe
(Giraffa camelopardalis)
30 Giraffen.jpg Karyotype of giraffe (Giraffa camelopardalis).png [54]
60 American mink
(Neogale vison)
30 American mink geograph.co.uk 2083077.jpg
61 Pistachio
(Pistacia vera)
30 ARS pistachio.jpg Karyotype of Pistachio (Pistacia vera).png [55]
62 Japanese oak silkmoth (Antheraea yamamai)31 Antheraea yamamai male sjh.jpg Antheraea yamamai karyotype.jpg [56]
63 Baker's yeast
(Saccharomyces cerevisiae)
32 S cerevisiae under DIC microscopy.jpg
64 European honey bee
(Apis mellifera)
32/16 BeeCropped.jpg Karyotype of Honey bee (Apis mellifera).png 32 for females (2n = 32), males are haploid and thus have 16 (1n =16). [57] [57]
65 American badger
(Taxidea taxus)
32 AmericanBadger.JPG
66 Alfalfa
(Medicago sativa)
32 Graines de luzerne bio germees - 001.JPG Karyotype of tetraploid Alfalfa (Medicago sativa ssp falcata).png Cultivated alfalfa is tetraploid, with 2n=4x=32. Wild relatives have 2n=16. [22] :165 [22]
67 Red fox
(Vulpes vulpes)
34 Vulpes vulpes 2.jpg Plus 0-8 B chromosomes. [58]
68 Sunflower
(Helianthus annuus)
34 Lule Dielli.JPG Karyotype of sunflower (Helianthus annuus).png [59]
69 Porcupine
(Erethizon dorsatum)
34 Porcupine-BioDome.jpg [60]
70 Globe artichoke
(Cynara cardunculus var. scolymus)
34 Artichoke J1.jpg Karyotype of globe artichoke.png [61]
71 Yellow mongoose
(Cynictis penicillata)
36 Yellow mongoose 1.jpg
72 Tibetan sand fox
(Vulpes ferrilata)
36 Tibet Fox.jpg
73 Starfish
(Asteroidea)
36 Nerr0878.jpg
74 Red panda
(Ailurus fulgens)
36 Ailurus fulgens RoterPanda LesserPanda.jpg
75 Meerkat
(Suricata suricatta)
36 Meerkat feb 09.jpg
76 Cassava
(Manihot esculenta)
36 Manihot esculenta 001.jpg Karyotype of Cassava (Manihot esculenta).png [62]
77 Long-nosed cusimanse
(Crossarchus obscurus)
36 Crossarchus obscurus Plzen zoo 02.2011.jpg
78 Earthworm
(Lumbricus terrestris)
36 Regenwurm1.jpg
79 African clawed frog
(Xenopus laevis)
36 Xenopus laevis 1.jpg Karyotype of African clawed frog (Xenopus laevis).png [35]
80 Waterwheel plant
(Aldrovanda vesiculosa)
38 Aldrovanda vesiculosa.jpg [36]
81 Tiger
(Panthera tigris)
38 Tigress at Jim Corbett National Park.jpg Karyotype of Siberian tiger.png
82 Sea otter
(Enhydra lutris)
38 Sea otter.jpg
83 Sable
(Martes zibellina)
38 Sable - 2.png
84 Raccoon
(Procyon lotor)
38 Procyon lotor (raccoon).jpg [63]
85 Pine marten
(Martes martes)
38 Baummarder 01.jpg
86 Pig
(Sus)
38 Sus Barbatus, the Bornean Bearded Pig (12616351323).jpg Karyotype of normal male pig.png
87 Oriental small-clawed otter
(Aonyx cinerea)
38 Otter - melbourne zoo.jpg
88 Lion
(Panthera leo)
38 Lion Ngorongoro Crater.jpg
89 Fisher
(Pekania pennanti)
38 Martes martes crop.jpg a type of marten
90 European mink
(Mustela lutreola)
38 Europaischer Nerz.jpg
91 Coatimundi 38 Coati.jpg
92 Cat
(Felis catus)
38 Kittyply edit1.jpg Karyotype of domestic cat (Felis catus).png
93 Beech marten
(Martes foina)
38 Steinmarder 01.jpg
94 Baja California rat snake
(Bogertophis rosaliae)
38 Bogertophis subocularis.jpg [64]
95 American marten
(Martes americana)
38 Marten with Flowers.jpg
96 Trans-Pecos ratsnake
(Bogertophis subocularis)
40 Trans-Pecos Rat Snake.jpg [65]
97 Mouse
(Mus musculus)
40 Mysh' 2.jpg Karyotype of normal male mouse.png [66]
98 Mango
(Mangifera indica)
40 Mangga indramayu 071007-0327 rwg.jpg [22]
99 Hyena
(Hyaenidae)
40 Spotted Hyena and young in Ngorogoro crater.jpg
100 Ferret
(Mustela furo)
40 Furets albinos champagne et zibeline sable.jpg
101 European polecat
(Mustela putorius)
40 Ilder.jpg
102 American beaver
(Castor canadensis)
40 Castor canadensis.jpg
103 Peanut
(Arachis hypogaea)
40 Arachis-hypogaea-(peanuts).jpg Karyotype of cultivated peanut (Arachis hypogaea).png Cultivated peanut is an allotetraploid (2n = 4x = 40). Its closest relatives are the diploid (2n = 2x = 20). [67] [67]
104 Wolverine
(Gulo gulo)
42 Gulo gulo 01.jpg
105 Wheat
(Triticum aestivum)
42 Wheat (Triticum aestivum L.) at Alnarp 1.jpg Karyotype of wheat (Triticum aestivum).png This is a hexaploid with 2n=6x=42. Durum wheat is Triticum turgidum var. durum, and is a tetraploid with 2n=4x=28. [22] [22]
106 Rhesus monkey
(Macaca mulatta)
42 Macaca mulatta in Guiyang.jpg Karyotype of normal male rhesus macaque (Macaca mulatta).png [68]
107 Rat
(Rattus norvegicus)
42 Rattus norvegicus 1.jpg Karyogram of normal rat.png [69]
108 Oats
(Avena sativa)
42 Avena sativa 002.JPG Karyotype of hexaploid common wild oat (Avena fatua).png This is a hexaploid with 2n=6x=42. Diploid and tetraploid cultivated species also exist. [22] [22]
109 Giant panda
(Ailuropoda melanoleuca)
42 Giant Panda 2004-03-2.jpg
110 Fossa
(Cryptoprocta ferox)
42 Cryptoprocta ferox.jpg
111 European rabbit
(Oryctolagus cuniculus)
44 Oryctolagus cuniculus Tasmania 2.jpg Karyotype of Rabbit (Oryctolagus cuniculus).png
112 Eurasian badger
(Meles meles)
44 Badger-badger.jpg
113 Moon jellyfish
(Aurelia aurita)
44 Moon jellyfish at Gota Sagher.JPG [70]
114 Dolphin
(Delphinidae)
44 Kentriodon BW.jpg
115 Arabian coffee
(Coffea arabica)
44 Coffee arabica 12.10.2011 14-01-6.jpg Karyotype of Coffea arabica.png Out of the 103 species in the genus Coffea , arabica coffee is the only tetraploid species (2n = 4x = 44), the remaining species being diploid with 2n = 2x = 22. [71]
116 Reeves's muntjac
(Muntiacus reevesi)
46 Formosan Reeve's muntjac.jpg
117 Human
(Homo sapiens)
46 Akha cropped hires.JPG Human male karyotpe high resolution.jpg 44 autosomal. and 2 allosomic (sex) [72]
118 Olive

(Olea Europaea)

46 Olivesfromjordan.jpg
119 Nilgai
(Boselaphus tragocamelus)
46 Nilgais fighting, Lakeshwari, Gwalior district, India.jpg [73]
120 Parhyale hawaiensis 46 Parhyale hawaiensis - adult female.png Parhyale hawaiensis - karyotype.png [74]
121 Water buffalo (swamp type)
(Bubalus bubalis)
48 Water buffaloes bathing at sunset.jpg
122 Tobacco
( Nicotiana tabacum )
48 Nicotiana Tobacco Plants 1909px.jpg Karyotype of Tobacco (Nicotiana tabacum).png Cultivated species N. tabacum is an amphidiploid (2n=4x=48) evolved through the interspecific hybridization of the ancestors of N. sylvestris (2n=2x=24, maternal donor) and N. tomentosiformis (2n=2x=24, paternal donor) about 200,000 years ago. [75] [75]
123 Potato
(Solanum tuberosum)
48 Solanum tuberosum 02.jpg Karyotype of Potato (Solanum tuberosum).png This is for common potato Solanum tuberosum (tetraploid, 2n = 4x = 48). Other cultivated potato species may be diploid (2n = 2x = 24), triploid (2n = 3x = 36), tetraploid (2n = 4x = 48), or pentaploid (2n = 5x = 60). [76] Wild relatives mostly have 2n=24. [22] [76]
124 Orangutan
(Pongo)
48 Orang Utan, Semenggok Forest Reserve, Sarawak, Borneo, Malaysia.JPG Karyotype of Orangutan (Pongo).png
125 Hare
(Lepus)
48 Polarhase 1 1997-08-04.jpg [77] [78]
126 Gorilla
(Gorilla)
48 Gorillas in Uganda-1, by Fiver Locker.jpg
127 Deer mouse
(Peromyscus maniculatus)
48 Peromyscus maniculatus.jpg
128 Chimpanzee
(Pan troglodytes)
48 Lightmatter chimp.jpg Karyotype of chimpanzee (Pan troglodytes).png [79]
129 Eurasian beaver
(Castor fiber)
48 Beaver pho34.jpg
130 Zebrafish
(Danio rerio)
50 Zebrafisch.jpg Karyotype of zebrafish (Danio rerio).png [80]
131Woodland hedgehogs
Erinaceus
48 Erinaceus europeaus (DarkAn9el).jpg [81]
132 African hedgehogs
Atelerix
48 Igel01.jpg [82]
133 Water buffalo (Riverine type)
(Bubalus bubalis)
50 Water buffaloes in Wuyishan Wufu 2012.08.24 15-46-30.jpg Karyotype of female Nili Ravi buffalo.png
134 Striped skunk
(Mephitis mephitis)
50 Striped Skunk (Mephitis mephitis) DSC 0030.jpg
135 Pineapple
(Ananas comosus)
50 Pineapple victoria dsc07770.jpg [22]
136 Kit fox
(Vulpes macrotis)
50 Vulpes macrotis mutica with pups.jpg
137 Spectacled bear
(Tremarctos ornatus)
52 Urso-de-oculos no Zoologico de Sorocaba.JPG
138 Platypus
(Ornithorhynchus anatinus)
52 Platypus BrokenRiver QLD Australia.jpg Karyotype of male platypus (Ornithorhynchus anatinus).png Ten sex chromosomes. Males have X1Y1X2Y2X3Y3X4Y4X5Y5, females have X1X1X2X2X3X3X4X4X5X5. [83] [84]
139 Upland cotton
(Gossypium hirsutum)
52 CottonPlant.JPG Karyotype of Cotton (Gossypium hirsutum).png This is for the cultivated species G. hirsutum (allotetraploid, 2n=4x=52). This species accounts for 90% of the world cotton production. Among 50 species in the genus Gossypium , 45 are diploid (2n = 2x = 26) and 5 are allotetraploid (2n = 4x = 52). [85] [85]
140 Sheep
(Ovis aries)
54 Sheep norwegian dala.jpg Karyotype of sheep (Ovis aries).png
141 Hyrax
(Hyracoidea)
54 Procavia-capensis-Frontal.JPG Karyotype of rock hyrax (Procavia capensis).png Hyraxes were considered to be the closest living relatives of elephants, [86] but sirenians have been found to be more closely related to elephants. [87]
142 Raccoon dog
(Nyctereutes procyonoides procyonoides)
54 Nyctereutes procyonoides 4 (Piotr Kuczynski).jpg Karyotype of Chinese raccoon dog (Nyctereutes procyonoides procyonoides).png This number is for common raccoon dog (N. p. procyonoides), 2n=54+B(0–4). On the other hand, Japanese raccoon dog (N. p. viverrinus) with 2n=38+B(0–8). Here, B represents B chromosome and its variation in the number between individuals. [88] [89] [88]
143 Capuchin monkey
(Cebinae)
54 Cebus capucinus, Costa Rica.JPG [90]
144 Silkworm
(Bombyx mori)
56 Pairedmoths.jpg Karyotype of Silkworm (Bombyx mori).png This is for the species mulberry silkworm, B. mori (2n=56). Probably more than 99% of the world's commercial silk today come from this species. [91] Other silk producing moths, called non-mulberry silkworms, have various chromosome numbers. (e.g. Samia cynthia with 2n=25–28, [92] Antheraea pernyi with 2n=98. [93] ) [94]
145 Strawberry
(Fragaria × ananassa)
56 Fragaria x ananassa.JPG Karyotype of Strawberry (Fragaria virginiana ssp glauca).png This number is octoploid, main cultivated species Fragaria × ananassa (2n = 8x = 56). In genus Fragaria , basic chromosome number is seven (x = 7) and multiple levels of ploidy, ranging from diploid (2n = 2x = 14) to decaploid ( F. iturupensis , 2n = 10x = 70), are known. [95] [95]
146 Gaur
(Bos gaurus)
56 Bos gaurus.jpeg
147 Elephant
(Elephantidae)
56 Elephant near ndutu.jpg
148Woolly mammoth
(Mammuthus primigenius)
58 Mamut lanudo cropped.jpg extinct; tissue from a frozen carcass
149 Domestic yak
(Bos grunniens)
60 Bos grunniens - Syracuse Zoo.jpg
150 Goat
(Capra hircus)
60 Hausziege 04.jpg Karyotype of normal male goat.png
151 Cattle
(Bos taurus)
60 20100516 Vacas Vilarromaris, Oroso-8-1.jpg Karyotype of cattle.PNG
152 American bison
(Bison bison)
60 American bison k5680-1.jpg
153 Sable antelope
(Hippotragus niger)
60 Sable antelope (Hippotragus niger) adult male.jpg [96]
154 Bengal fox
(Vulpes bengalensis)
60 Indianfox.jpg
155 Gypsy moth
(Lymantria dispar dispar)
62 Lymantria dispar MHNT Fronton Male.jpg
156 Donkey
(Equus asinus)
62 Donkey 1 arp 750px.jpg
157 Scarlet macaw
(Ara macao)
62–64 Scarlet Macaw (Ara macao) -Panama-8a.jpg Karyotype of Scarlet Macaw (Ara macao).png [97]
158 Mule 63 Juancito.jpg semi-infertile (odd number of chromosomes – between donkey (62) and horse (64) makes meiosis much more difficult)
159 Guinea pig
(Cavia porcellus)
64 Two adult Guinea Pigs (Cavia porcellus).jpg G-banded karyotype of female guinea pig (Cavia porcellus).png
160 Spotted skunk
(Spilogale x)
64 Spilogale gracilis.jpg
161 Horse
(Equus caballus)
64 LaMirage body07.jpg Karyotype of male Marajoara Horse (Equus Caballus).png
162 Fennec fox
(Vulpes zerda)
64 Fennec Foxes.jpg [98]
163 Echidna
(Tachyglossidae)
63/64 Ameisenigel.jpg 63 (X1Y1X2Y2X3Y3X4Y4X5, male) and 64 (X1X1X2X2X3X3X4X4X5X5, female) [99]
164 Chinchilla
(Chinchilla lanigera)
64 Chinchilla lanigera.jpg [60]
165 Nine-banded armadillo
(Dasypus novemcinctus)
64 Nine-banded Armadillo.jpg Karyotype of nine-banded armadillo.png [100]
166 Gray fox
(Urocyon cinereoargenteus)
66 Urocyon cinereoargenteus.jpg [98]
167 Red deer
(Cervus elaphus)
68 Zoo-Dortmund-IMG 5549-a.jpg
168 Elk (wapiti)
(Cervus canadensis)
68 2007-Tule-elk-rut.jpg
169 Roadside hawk
(Rupornis magnirostris)
68 Buteo magnirostris -Goias -Brazil-8.jpg Karyotype of roadside hawk (Rupornis magnirostris).png [101]
170 White-tailed deer
(Odocoileus virginianus)
70 White-tailed deer (Odocoileus virginianus) grazing - 20050809.jpg
171Black nightshade
( Solanum nigrum )
72 Solanum nigra bgiu.jpg [102]
172Tropical blue bamboo
( Bambusa chungii )
64–72 Bambusa chungii close up view of the stem in HK.JPG [103]
173 Bat-eared fox
(Otocyon megalotis)
72 Otocyon megalotis (Namibia).jpg [98]
174 Sun bear
(Helarctos malayanus)
74 Sitting sun bear.jpg
175 Sloth bear
(Melursus ursinus)
74 Sloth Bear Washington DC.JPG
176 Polar bear
(Ursus maritimus)
74 Polar Bear - Alaska.jpg
177 Brown bear
(Ursus arctos)
74 Brown bear (Ursus arctos arctos) running.jpg
178 Asian black bear
(Ursus thibetanus)
74 Kragenbar.jpg
179 American black bear
(Ursus americanus)
74 Ursus americanus sequoia forest 2003-09-21.jpg
180 Bush dog
(Speothos venaticus)
74 Speothos venaticus Zoo Praha 2011-5 (cropped).jpg
181 Maned wolf
(Chrysocyon brachyurus)
76 Chrysocyon.brachyurus.jpg
182 Gray wolf
(Canis lupus)
78 Canis lupus 265b.jpg
183 Golden jackal
(Canis aureus)
78 Golden wolf sa02.jpg [98]
184Dove
(Columbidae)
78 Rock dove - natures pics.jpg Based on African collared dove [104]
185 Dog
(Canis familiaris)
78 Boddhi the mixed-breed dog.jpg Karyotype of Dog (Canis lupus familiaris).png Normal dog karyotype is composed of 38 pairs of acrocentric autosomes and two metacentric sex chromosomes. [105] [106] [107]
186 Dingo
(Canis familiaris)
78 Canis lupus dingo - cleland wildlife park.JPG [98]
187 Dhole
(Cuon alpinus)
78 Cuon.alpinus-cut.jpg
188 Coyote
(Canis latrans)
78 Coyote by Rebecca Richardson.jpg [98]
189 Chicken
(Gallus gallus domesticus)
78 Female pair.jpg Karyotype of chicken (Gallus gallus).png
190 African wild dog
(Lycaon pictus)
78 Lycaon pictus (Temminck, 1820).jpg [98]
191 Tropical pitcher plant
(Nepenthes rafflesiana)
78 Pahangraff3.jpg [36]
192 Turkey
(Meleagris)
80 Wild turkey eastern us.jpg [108]
193Sugarcane
( Saccharum officinarum )
80 Cut sugarcane.jpg Karyotype of Sugarcane (Saccharum officinarum LA Purple).png This is for S. officinarum (octoploid, 2n = 8× = 80). [109] About 70% of the world's sugar comes from this species. [110] Other species in the genus Saccharum , collectively known as sugarcane, have chromosome numbers in the range 2n=40–128. [111] [109]
194 Pigeon
(Columbidae)
80 Paloma en la Ciudad de Mexico.JPG [112]
195 Azure-winged magpie
(Cyanopica cyanus)
80 Cyanopica cyanus Yokohama 5.jpg [113]
196 Great white shark
(Carcharodon carcharias)
82 Carcharodon carcharias.jpg [114]
197 Bloody geranium
(Geranium sanguineum)
84 Geranium sanguineum - verev kurereha.jpg [115]
198 Moonworts
(Botrychium)
90 Botrychium-4.jpg
199 Grape fern
(Sceptridium)
90 Botrychium multifidum.jpg
200 Pittier's crab-eating rat
(Ichthyomys pittieri)
92 Ichthyomys hydrobates soderstromi Smit.jpg Previously thought to be the highest number in mammals, tied with Anotomys leander. [116]
201 Prawn
( Penaeus semisulcatus )
86–92 Penaeus monodon.jpg [117]
202 Aquatic rat
(Anotomys leander)
92 Muskrat swimming Ottawa.jpg Previously thought to be the highest number in mammals, tied with Ichthyomys pittieri. [116]
203 Kamraj (fern)
(Helminthostachys zeylanica)
94 Helminthostachys zeylanica.jpg
204 Crucian carp
(Carassius carassius)
100 Cyprinus carpio.jpeg Karyotype of crucian carp (Carassius carassius).png [118]
205 Red viscacha rat
(Tympanoctomys barrerae)
102 Tympanoctomys barrerae.jpg Metaphase spread of the Viscacha rat (Tympanoctomys barrerae).jpg Highest number known in mammals, thought to be a tetraploid [119] or allotetraploid. [120] [121]
206 Walking catfish
(Clarias batrachus)
104 Clarias batrachus.jpg Karyotype of walking catfish (Clarias batrachus).png [122]
207 American paddlefish
(Polyodon spathula)
120 Paddlefish underwater.jpeg Karyotype of North American paddlefish (Polyodon spathula).png [123]
208 Limestone fern
(Gymnocarpium robertianum)
160 Gymnocarpium robertianum, Ireland.jpg Tetraploid (2n = 4x = 160) [124]
209 African baobab
(Adansonia digitata)
168 Baobab and elephant, Tanzania.jpg Also known as the "tree of life". 2n = 4x = 168 [125]
210 Northern lampreys
(Petromyzontidae)
174 Petromyzon marinus2.jpg [126]
211 Rattlesnake fern
(Botrypus virginianus)
184 Botrychium virginianum.JPG [127]
212 Red king crab
(Paralithodes camtschaticus)
208 Paralithodes camtschaticus, 1.jpg
213 Field horsetail
(Equisetum arvense)
216 Equisetum arvense foliage.jpg
214 Agrodiaetus butterfly
(Agrodiaetus shahrami)
268 Blauling auf einer Distel.jpg This insect has one of the highest chromosome numbers among all animals. [128]
215 Black mulberry
(Morus nigra)
308 Morus-nigra.JPG Highest ploidy among plants, 22-ploid (2n = 22x = 308) [129] [130]
216 Atlas blue
(Polyommatus atlantica)
448–452 PolyommatusAtlanticaMMUpUnAC1.jpg Karyotype of Atlas blue (Polyommatus atlanticus).png 2n = c.448–452. Highest number of chromosomes in the non-polyploid eukaryotic organisms. [131] [131]
217 Adders-tongue
( Ophioglossum reticulatum )
1260 Ophioglossum closeup.jpg n=120–720 with a high degree of polyploidization. [132] Ophioglossum reticulatum n=720 in hexaploid species, 2n=1260 in decaploid species. [133]
218Ciliated protozoa
( Tetrahymena thermophila )
10 (in micronucleus) Tetrahymena thermophila.png 50x = 12,500 (in macronucleus, except minichromosomes)
10,000x = 10,000 (macronuclear minichromosomes) [134]
219Ciliated protozoa
( Sterkiella histriomuscorum )
16,000 [135] Oxytricha trifallax.jpg Macronuclear "nanochromosomes"; ampliploid. MAC chromosomes × 1900 ploidy level = 2.964 × 107 chromosomes [136] [137] [138]

Related Research Articles

<span class="mw-page-title-main">Genome</span> All genetic material of an organism

In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA. The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as regulatory sequences, and often a substantial fraction of junk DNA with no evident function. Almost all eukaryotes have mitochondria and a small mitochondrial genome. Algae and plants also contain chloroplasts with a chloroplast genome.

<span class="mw-page-title-main">Polyploidy</span> Condition where cells of an organism have more than two paired sets of chromosomes

Polyploidy is a condition in which the cells of an organism have more than one pair of (homologous) chromosomes. Most species whose cells have nuclei (eukaryotes) are diploid, meaning they have two complete sets of chromosomes, one from each of two parents; each set contains the same number of chromosomes, and the chromosomes are joined in pairs of homologous chromosomes. However, some organisms are polyploid. Polyploidy is especially common in plants. Most eukaryotes have diploid somatic cells, but produce haploid gametes by meiosis. A monoploid has only one set of chromosomes, and the term is usually only applied to cells or organisms that are normally diploid. Males of bees and other Hymenoptera, for example, are monoploid. Unlike animals, plants and multicellular algae have life cycles with two alternating multicellular generations. The gametophyte generation is haploid, and produces gametes by mitosis; the sporophyte generation is diploid and produces spores by meiosis.

<span class="mw-page-title-main">Y chromosome</span> Sex chromosome in the XY sex-determination system

The Y chromosome is one of two sex chromosomes in therian mammals and other organisms. Along with the X chromosome, it is part of the XY sex-determination system, in which the Y is the sex-determining because it is the presence or absence of Y chromosome that determines the male or female sex of offspring produced in sexual reproduction. In mammals, the Y chromosome contains the SRY gene, which triggers development of male gonads. The Y chromosome is passed only from male parents to male offspring.

<span class="mw-page-title-main">Afrotheria</span> Clade of mammals containing elephants and elephant shrews

Afrotheria is a superorder of mammals, the living members of which belong to groups that are either currently living in Africa or of African origin: golden moles, elephant shrews, otter shrews, tenrecs, aardvarks, hyraxes, elephants, sea cows, and several extinct clades. Most groups of afrotheres share little or no superficial resemblance, and their similarities have only become known in recent times because of genetics and molecular studies. Many afrothere groups are found mostly or exclusively in Africa, reflecting the fact that Africa was an island continent from the Cretaceous until the early Miocene around 20 million years ago, when Afro-Arabia collided with Eurasia.

<span class="mw-page-title-main">Comparative genomics</span>

Comparative genomics is a field of biological research in which the genomic features of different organisms are compared. The genomic features may include the DNA sequence, genes, gene order, regulatory sequences, and other genomic structural landmarks. In this branch of genomics, whole or large parts of genomes resulting from genome projects are compared to study basic biological similarities and differences as well as evolutionary relationships between organisms. The major principle of comparative genomics is that common features of two organisms will often be encoded within the DNA that is evolutionarily conserved between them. Therefore, comparative genomic approaches start with making some form of alignment of genome sequences and looking for orthologous sequences in the aligned genomes and checking to what extent those sequences are conserved. Based on these, genome and molecular evolution are inferred and this may in turn be put in the context of, for example, phenotypic evolution or population genetics.

<span class="mw-page-title-main">Chromosomal inversion</span> Chromosome rearrangement in which a segment of a chromosome is reversed

An inversion is a chromosome rearrangement in which a segment of a chromosome becomes inverted within its original position. An inversion occurs when a chromosome undergoes a two breaks within the chromosomal arm, and the segment between the two breaks inserts itself in the opposite direction in the same chromosome arm. The breakpoints of inversions often happen in regions of repetitive nucleotides, and the regions may be reused in other inversions. Chromosomal segments in inversions can be as small as 1 kilobases or as large as 100 megabases. The number of genes captured by an inversion can range from a handful of genes to hundreds of genes. Inversions can happen either through ectopic recombination between repetitive sequences, or through chromosomal breakage followed by non-homologous end joining.

<span class="mw-page-title-main">Sequence homology</span> Shared ancestry between DNA, RNA or protein sequences

Sequence homology is the biological homology between DNA, RNA, or protein sequences, defined in terms of shared ancestry in the evolutionary history of life. Two segments of DNA can have shared ancestry because of three phenomena: either a speciation event (orthologs), or a duplication event (paralogs), or else a horizontal gene transfer event (xenologs).

<span class="mw-page-title-main">Molecular cytogenetics</span>

Molecular cytogenetics combines two disciplines, molecular biology and cytogenetics, and involves the analysis of chromosome structure to help distinguish normal and cancer-causing cells. Human cytogenetics began in 1956 when it was discovered that normal human cells contain 46 chromosomes. However, the first microscopic observations of chromosomes were reported by Arnold, Flemming, and Hansemann in the late 1800s. Their work was ignored for decades until the actual chromosome number in humans was discovered as 46. In 1879, Arnold examined sarcoma and carcinoma cells having very large nuclei. Today, the study of molecular cytogenetics can be useful in diagnosing and treating various malignancies such as hematological malignancies, brain tumors, and other precursors of cancer. The field is overall focused on studying the evolution of chromosomes, more specifically the number, structure, function, and origin of chromosome abnormalities. It includes a series of techniques referred to as fluorescence in situ hybridization, or FISH, in which DNA probes are labeled with different colored fluorescent tags to visualize one or more specific regions of the genome. Introduced in the 1980s, FISH uses probes with complementary base sequences to locate the presence or absence of the specific DNA regions. FISH can either be performed as a direct approach to metaphase chromosomes or interphase nuclei. Alternatively, an indirect approach can be taken in which the entire genome can be assessed for copy number changes using virtual karyotyping. Virtual karyotypes are generated from arrays made of thousands to millions of probes, and computational tools are used to recreate the genome in silico.

In human mitochondrial genetics, Haplogroup G is a human mitochondrial DNA (mtDNA) haplogroup.

Saccharomyces bayanus is a yeast of the genus Saccharomyces, and is used in winemaking and cider fermentation, and to make distilled beverages. Saccharomyces bayanus, like Saccharomyces pastorianus, is now accepted to be the result of multiple hybridisation events between three pure species, Saccharomyces uvarum, Saccharomyces cerevisiae and Saccharomyces eubayanus. Notably, most commercial yeast cultures sold as pure S. bayanus for wine making, e.g. Lalvin EC-1118 strain, have been found to contain S. cerevisiae cultures instead

Population genomics is the large-scale comparison of DNA sequences of populations. Population genomics is a neologism that is associated with population genetics. Population genomics studies genome-wide effects to improve our understanding of microevolution so that we may learn the phylogenetic history and demography of a population.

TOX high mobility group box family member 3, also known as TOX3, is a human gene.

Virtual karyotype is the digital information reflecting a karyotype, resulting from the analysis of short sequences of DNA from specific loci all over the genome, which are isolated and enumerated. It detects genomic copy number variations at a higher resolution for level than conventional karyotyping or chromosome-based comparative genomic hybridization (CGH). The main methods used for creating virtual karyotypes are array-comparative genomic hybridization and SNP arrays.

<span class="mw-page-title-main">Microchromosome</span> Type of chromosome

A microchromosome is a chromosome defined for its relatively small size. They are typical components of the karyotype of birds, some reptiles, fish, amphibians, and monotremes. As many bird genomes have chromosomes of widely different lengths, the name was meant to distinguish them from the comparatively large macrochromosomes. The distinction referred to the measured size of the chromosome while staining for karyotype, and while there is not a strict definition, chromosomes resembling the large chromosomes of mammals were called macrochromosomes, while the much smaller ones of less than around 0.5 µm were called microchromosomes. In terms of base pairs, by convention, those of less than 20Mb were called microchromosomes, those between 20 and 40 Mb are classified as intermediate chromosomes, and those larger than 40Mb are macrochromosomes. By this definition, all normal chromosomes in organisms with relatively small genomes would be considered microchromosomes.

The 2000s witnessed an explosion of genome sequencing and mapping in evolutionarily diverse species. While full genome sequencing of mammals is rapidly progressing, the ability to assemble and align orthologous whole chromosomal regions from more than a few species is not yet possible. The intense focus on the building of comparative maps for domestic, laboratory and agricultural (cattle) animals has traditionally been used to understand the underlying basis of disease-related and healthy phenotypes.

Holocentric chromosomes are chromosomes that possess multiple kinetochores along their length rather than the single centromere typical of other chromosomes. They were first described in cytogenetic experiments in 1935. Since this first observation, the term holocentric chromosome has referred to chromosomes that: i) lack the primary constriction corresponding to the centromere observed in monocentric chromosomes; and ii) possess multiple kinetochores dispersed along the entire chromosomal axis, such that microtubules bind to the chromosome along its entire length and move broadside to the pole from the metaphase plate. Holocentric chromosomes are also termed holokinetic, because, during cell division, the sister chromatids move apart in parallel and do not form the classical V-shaped figures typical of monocentric chromosomes.

Eukaryote hybrid genomes result from interspecific hybridization, where closely related species mate and produce offspring with admixed genomes. The advent of large-scale genomic sequencing has shown that hybridization is common, and that it may represent an important source of novel variation. Although most interspecific hybrids are sterile or less fit than their parents, some may survive and reproduce, enabling the transfer of adaptive variants across the species boundary, and even result in the formation of novel evolutionary lineages. There are two main variants of hybrid species genomes: allopolyploid, which have one full chromosome set from each parent species, and homoploid, which are a mosaic of the parent species genomes with no increase in chromosome number.

References

  1. Concise Oxford Dictionary
  2. White MJ (1973). The chromosomes (6th ed.). London: Chapman & Hall. p.  28.
  3. Stebbins GL (1950). "Chapter XII: The Karyotype". Variation and evolution in plants. Columbia University Press.
  4. King RC, Stansfield WD, Mulligan PK (2006). A dictionary of genetics (7th ed.). Oxford University Press. p. 242.
  5. 1 2 Crosland MW, Crozier RH (March 1986). "Myrmecia pilosula, an Ant with Only One Pair of Chromosomes". Science. 231 (4743): 1278. Bibcode:1986Sci...231.1278C. doi:10.1126/science.231.4743.1278. PMID   17839565. S2CID   25465053.
  6. 1 2 Helle W, Bolland HR, Gutierrez J (1972). "Minimal chromosome number in false spider mites (Tenuipalpidae)". Experientia. 28 (6): 707. doi:10.1007/BF01944992. S2CID   29547273.
  7. Michailova P (1976). "Cytotaxonomical Diagnostics of Species from the Genus Cricotopus (Chironomidae, Diptera)". Caryologia. 29 (3): 291–306. doi: 10.1080/00087114.1976.10796669 .
  8. Körner WH (1952). "Untersuchungen über die Gehäusebildung bei Appendicularien (Oikopleura dioica Fol)". Zeitschrift für Morphologie und Ökologie der Tiere. 41 (1): 1–53. doi:10.1007/BF00407623. JSTOR   43261846. S2CID   19101198.
  9. 1 2 Giannelli F, Hall JC, Dunlap JC, Friedmann T (1999). Advances in Genetics, Volume 41 (Advances in Genetics). Boston: Academic Press. p. 2. ISBN   978-0-12-017641-0.
  10. Wang W, Lan H (September 2000). "Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial DNA phylogeny". Molecular Biology and Evolution. 17 (9): 1326–33. doi: 10.1093/oxfordjournals.molbev.a026416 . PMID   10958849.
  11. Wurster DH, Benirschke K (June 1970). "Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number". Science. 168 (3937): 1364–6. Bibcode:1970Sci...168.1364W. doi:10.1126/science.168.3937.1364. PMID   5444269. S2CID   45371297.
  12. "Drosophila Genome Project". National Center for Biotechnology Information . Retrieved 2009-04-14.
  13. Zadesenets KS, Vizoso DB, Schlatter A, Konopatskaia ID, Berezikov E, Schärer L, Rubtsov NB (2016). "Evidence for Karyotype Polymorphism in the Free-Living Flatworm, Macrostomum lignano, a Model Organism for Evolutionary and Developmental Biology". PLOS ONE. 11 (10): e0164915. Bibcode:2016PLoSO..1164915Z. doi: 10.1371/journal.pone.0164915 . PMC   5068713 . PMID   27755577.
  14. Shimamura, Masaki (2016). "Marchantia polymorpha: Taxonomy, Phylogeny and Morphology of a Model System". Plant & Cell Physiology. 57 (2): 230–256. doi: 10.1093/pcp/pcv192 . PMID   26657892.
  15. Toder R, O'Neill RJ, Wienberg J, O'Brien PC, Voullaire L, Marshall-Graves JA (June 1997). "Comparative chromosome painting between two marsupials: origins of an XX/XY1Y2 sex chromosome system". Mammalian Genome. 8 (6): 418–22. doi:10.1007/s003359900459. PMID   9166586. S2CID   12515691.
  16. Leach CR, Donald TM, Franks TK, Spiniello SS, Hanrahan CF, Timmis JN (July 1995). "Organisation and origin of a B chromosome centromeric sequence from Brachycome dichromosomatica". Chromosoma. 103 (10): 708–14. doi:10.1007/BF00344232. PMID   7664618. S2CID   12246995.
  17. Fujito S, Takahata S, Suzuki R, Hoshino Y, Ohmido N, Onodera Y (June 2015). "Evidence for a Common Origin of Homomorphic and Heteromorphic Sex Chromosomes in Distinct Spinacia Species". G3. 5 (8): 1663–73. doi:10.1534/g3.115.018671. PMC   4528323 . PMID   26048564.
  18. Patlolla AK, Berry A, May L, Tchounwou PB (May 2012). "Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles". International Journal of Environmental Research and Public Health. 9 (5): 1649–62. doi: 10.3390/ijerph9051649 . PMC   3386578 . PMID   22754463.
  19. 1 2 Sbilordo SH, Martin OY, Ward PI (2010). "The karyotype of the yellow dung fly, Scathophaga stercoraria, a model organism in studies of sexual selection". Journal of Insect Science. 10 (118): 1–11. doi:10.1673/031.010.11801. PMC   3016996 . PMID   20874599.
  20. "First of six chromosomes sequenced in Dictyostelium discoideum". Genome News Network. Retrieved 2009-04-29.
  21. Zhang Y, Cheng C, Li J, Yang S, Wang Y, Li Z, et al. (September 2015). "Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping". BMC Genomics. 16 (1): 730. doi: 10.1186/s12864-015-1877-6 . PMC   4583154 . PMID   26407707.
  22. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Simmonds, NW, ed. (1976). Evolution of crop plants. New York: Longman. ISBN   978-0-582-44496-6.[ page needed ]
  23. Schubert V, Ruban A, Houben A (2016). "Chromatin Ring Formation at Plant Centromeres". Frontiers in Plant Science. 7: 28. doi: 10.3389/fpls.2016.00028 . PMC   4753331 . PMID   26913037.
  24. 1 2 Haque SM, Ghosh B (December 2013). "High frequency microcloning of Aloe vera and their true-to-type conformity by molecular cytogenetic assessment of two years old field growing regenerated plants". Botanical Studies. 54 (1): 46. Bibcode:2013BotSt..54...46H. doi: 10.1186/1999-3110-54-46 . PMC   5430365 . PMID   28510900.
  25. Rofe RH (December 1978). "G-banded chromosomes and the evolution of macropodidae". Australian Mammalogy. 2: 50–63. doi:10.1071/AM78007. ISSN   0310-0049. S2CID   254728517.
  26. Colombera D (1974). "Chromosome number within the class Ascidiacea". Marine Biology. 26 (1): 63–68. Bibcode:1974MarBi..26...63C. doi:10.1007/BF00389087. S2CID   84189212.
  27. 1 2 Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al. (July 2009). "The genome of the blood fluke Schistosoma mansoni". Nature. 460 (7253): 352–8. Bibcode:2009Natur.460..352B. doi:10.1038/nature08160. PMC   2756445 . PMID   19606141.
  28. 1 2 Nagaki K, Yamamoto M, Yamaji N, Mukai Y, Murata M (2012). "Chromosome dynamics visualized with an anti-centromeric histone H3 antibody in Allium". PLOS ONE. 7 (12): e51315. Bibcode:2012PLoSO...751315N. doi: 10.1371/journal.pone.0051315 . PMC   3517398 . PMID   23236469.
  29. 1 2 Mounsey KE, Willis C, Burgess ST, Holt DC, McCarthy J, Fischer K (January 2012). "Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus". Parasites & Vectors. 5: 3. doi: 10.1186/1756-3305-5-3 . PMC   3274472 . PMID   22214472.
  30. 1 2 Dunemann F, Schrader O, Budahn H, Houben A (2014). "Characterization of centromeric histone H3 (CENH3) variants in cultivated and wild carrots (Daucus sp.)". PLOS ONE. 9 (6): e98504. Bibcode:2014PLoSO...998504D. doi: 10.1371/journal.pone.0098504 . PMC   4041860 . PMID   24887084.
  31. Guerra M, Pedrosa A, Cornélio MT, Santos K, Soares Filho WD (1997). "Chromosome number and secondary constriction variation in 51 accessions of a citrus germplasm bank". Brazilian Journal of Genetics. 20 (3): 489–496. doi: 10.1590/S0100-84551997000300021 .
  32. Hynniewta M, Malik SK, Rao SR (2011). "Karyological studies in ten species of Citrus(Linnaeus, 1753) (Rutaceae) of North-East India". Comparative Cytogenetics. 5 (4): 277–87. doi: 10.3897/CompCytogen.v5i4.1796 . PMC   3833788 . PMID   24260635.
  33. Souza, Margarete Magalhães, Telma N. Santana Pereira, and Maria Lúcia Carneiro Vieira. "Cytogenetic studies in some species of Passiflora L.(Passifloraceae): a review emphasizing Brazilian species." Brazilian Archives of Biology and Technology 51.2 (2008): 247–258. https://dx.doi.org/10.1590/S1516-89132008000200003
  34. Nani TF, Cenzi G, Pereira DL, Davide LC, Techio VH (2015). "Ribosomal DNA in diploid and polyploid Setaria (Poaceae) species: number and distribution". Comparative Cytogenetics. 9 (4): 645–60. doi: 10.3897/CompCytogen.v9i4.5456 . PMC   4698577 . PMID   26753080.
  35. 1 2 Matsuda Y, Uno Y, Kondo M, Gilchrist MJ, Zorn AM, Rokhsar DS, et al. (April 2015). "A New Nomenclature of Xenopus laevis Chromosomes Based on the Phylogenetic Relationship to Silurana/Xenopus tropicalis". Cytogenetic and Genome Research. 145 (3–4): 187–91. doi:10.1159/000381292. PMID   25871511. S2CID   207626597.
  36. 1 2 3 Kondo K (May 1969). "Chromosome Numbers of Carnivorous Plants". Bulletin of the Torrey Botanical Club. 96 (3): 322–328. doi:10.2307/2483737. JSTOR   2483737.
  37. da Silva RA, Souza G, Lemos LS, Lopes UV, Patrocínio NG, Alves RM, et al. (2017). "Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae)". PLOS ONE. 12 (2): e0170799. Bibcode:2017PLoSO..1270799D. doi: 10.1371/journal.pone.0170799 . PMC   5302445 . PMID   28187131.
  38. Oudjehih B, Abdellah B (2006). "Chromosome numbers of the 59 species of Eucalyptus L'Herit. (Myrtaceae)". Caryologia. 59 (3): 207–212. doi: 10.1080/00087114.2006.10797916 .
  39. Balasaravanan T, Chezhian P, Kamalakannan R, Ghosh M, Yasodha R, Varghese M, Gurumurthi K (October 2005). "Determination of inter- and intra-species genetic relationships among six Eucalyptus species based on inter-simple sequence repeats (ISSR)". Tree Physiology. 25 (10): 1295–302. doi: 10.1093/treephys/25.10.1295 . PMID   16076778.
  40. Biggers JD, Fritz HI, Hare WC, Mcfeely RA (June 1965). "Chromosomes of American Marsupials". Science. 148 (3677): 1602–3. Bibcode:1965Sci...148.1602B. doi:10.1126/science.148.3677.1602. PMID   14287602. S2CID   46617910.
  41. Argyris JM, Ruiz-Herrera A, Madriz-Masis P, Sanseverino W, Morata J, Pujol M, et al. (January 2015). "Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly". BMC Genomics. 16 (1): 4. doi: 10.1186/s12864-014-1196-3 . PMC   4316794 . PMID   25612459.
  42. Heiser CB, Whitaker TW (March 1948). "Chromosome number, polyploidy, and growth habit in California weeds". American Journal of Botany. 35 (3): 179–86. doi:10.2307/2438241. JSTOR   2438241. PMID   18909963.
  43. Ivanova D, Vladimirov V (2007). "Chromosome numbers of some woody species from the Bulgarian flora" (PDF). Phytologia Balcanica. 13 (2): 205–207.
  44. Staginnus C, Gregor W, Mette MF, Teo CH, Borroto-Fernández EG, Machado ML, et al. (May 2007). "Endogenous pararetroviral sequences in tomato (Solanum lycopersicum) and related species". BMC Plant Biology. 7: 24. doi: 10.1186/1471-2229-7-24 . PMC   1899175 . PMID   17517142.
  45. Packham JR, Thomas PA, Atkinson MD, Degen T (2012). "Biological Flora of the British Isles:Fagus sylvatica". Journal of Ecology. 100 (6): 1557–1608. Bibcode:2012JEcol.100.1557P. doi:10.1111/j.1365-2745.2012.02017.x. S2CID   85095298.
  46. Abrams L (1951). Illustrated Flora of the Pacific States. Volume 3. Stanford University Press. p. 866.
  47. Stace C (1997). New Flora of the British Isles (Second ed.). Cambridge, UK. p. 1130.
  48. Zaldoš V, Papeš D, Brown SC, Panaus O, Šiljak-Yakovlev S (1998) Genome size and base composition of seven Quercus species: inter- and intra-population variation. Genome, 41: 162–168.
  49. Doležálková M, Sember A, Marec F, Ráb P, Plötner J, Choleva L (July 2016). "Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax?". BMC Genetics. 17 (1): 100. doi: 10.1186/s12863-016-0408-z . PMC   4930623 . PMID   27368375.
  50. Zaleśna A, Choleva L, Ogielska M, Rábová M, Marec F, Ráb P (2011). "Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization". Cytogenetic and Genome Research. 134 (3): 206–12. doi:10.1159/000327716. PMID   21555873. S2CID   452336.
  51. Keinath MC, Timoshevskiy VA, Timoshevskaya NY, Tsonis PA, Voss SR, Smith JJ (November 2015). "Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing". Scientific Reports. 5: 16413. Bibcode:2015NatSR...516413K. doi:10.1038/srep16413. PMC   4639759 . PMID   26553646.
  52. 1 2 Sadílek D, Angus RB, Šťáhlavský F, Vilímová J (2016). "Comparison of different cytogenetic methods and tissue suitability for the study of chromosomes in Cimex lectularius (Heteroptera, Cimicidae)". Comparative Cytogenetics. 10 (4): 731–752. doi: 10.3897/CompCytogen.v10i4.10681 . PMC   5240521 . PMID   28123691.
  53. Achar KP (1986). "Analysis of male meiosis in seven species of Indian pill-millipede". Caryologia. 39 (39): 89–101. doi: 10.1080/00087114.1986.10797770 .
  54. Huang L, Nesterenko A, Nie W, Wang J, Su W, Graphodatsky AS, Yang F (2008). "Karyotype evolution of giraffes (Giraffa camelopardalis) revealed by cross-species chromosome painting with Chinese muntjac (Muntiacus reevesi) and human (Homo sapiens) paints". Cytogenetic and Genome Research. 122 (2): 132–8. doi:10.1159/000163090. PMID   19096208. S2CID   6674957.
  55. Sola-Campoy PJ, Robles F, Schwarzacher T, Ruiz Rejón C, de la Herrán R, Navajas-Pérez R (2015). "The Molecular Cytogenetic Characterization of Pistachio (Pistacia vera L.) Suggests the Arrest of Recombination in the Largest Heteropycnotic Pair HC1". PLOS ONE. 10 (12): e0143861. Bibcode:2015PLoSO..1043861S. doi: 10.1371/journal.pone.0143861 . PMC   4669136 . PMID   26633808.
  56. Kim SR, Kwak W, Kim H, Caetano-Anolles K, Kim KY, Kim SB, et al. (January 2018). "Genome sequence of the Japanese oak silk moth, Antheraea yamamai: the first draft genome in the family Saturniidae". GigaScience. 7 (1): 1–11. doi:10.1093/gigascience/gix113. PMC   5774507 . PMID   29186418.
  57. 1 2 Gempe T, Hasselmann M, Schiøtt M, Hause G, Otte M, Beye M (October 2009). "Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway". PLOS Biology. 7 (10): e1000222. doi: 10.1371/journal.pbio.1000222 . PMC   2758576 . PMID   19841734.
  58. Rubtsov, Nikolai B. (1 April 1998). "The Fox Gene Map". ILAR. 39 (2–3): 182–188. doi: 10.1093/ilar.39.2-3.182 . PMID   11528077.
  59. Feng J, Liu Z, Cai X, Jan CC (January 2013). "Toward a molecular cytogenetic map for cultivated sunflower (Helianthus annuus L.) by landed BAC/BIBAC clones". G3. 3 (1): 31–40. doi:10.1534/g3.112.004846. PMC   3538341 . PMID   23316437.
  60. 1 2 "Metapress – Discover More". 24 June 2016.
  61. Giorgi D, Pandozy G, Farina A, Grosso V, Lucretti S, Gennaro A, et al. (2016). "First detailed karyo-morphological analysis and molecular cytological study of leafy cardoon and globe artichoke, two multi-use Asteraceae crops". Comparative Cytogenetics. 10 (3): 447–463. doi: 10.3897/CompCytogen.v10i3.9469 . PMC   5088355 . PMID   27830052.
  62. An F, Fan J, Li J, Li QX, Li K, Zhu W, et al. (2014). "Comparison of leaf proteomes of cassava (Manihot esculenta Crantz) cultivar NZ199 diploid and autotetraploid genotypes". PLOS ONE. 9 (4): e85991. Bibcode:2014PLoSO...985991A. doi: 10.1371/journal.pone.0085991 . PMC   3984080 . PMID   24727655.
  63. Perelman PL, Graphodatsky AS, Dragoo JW, Serdyukova NA, Stone G, Cavagna P, et al. (2008). "Chromosome painting shows that skunks (Mephitidae, Carnivora) have highly rearranged karyotypes". Chromosome Research. 16 (8): 1215–31. doi:10.1007/s10577-008-1270-2. PMID   19051045. S2CID   952184.
  64. Dowling HG, Price RM (1988). "A proposed new genus for Elaphe subocularis and Elaphe rosaliae" (PDF). The Snake. 20 (1): 52–63. Archived from the original (PDF) on 29 October 2014.
  65. : "Chromosomes of Elaphe subocularis (Reptilia: Serpentes), with the description of an in vivo technique for preparation of snake chromosomes".
  66. The Jackson Laboratory Archived 2013-01-25 at the Wayback Machine : "Mice with chromosomal aberrations".
  67. 1 2 Milla SR, Isleib TG, Stalker HT (February 2005). "Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers". Genome. 48 (1): 1–11. doi:10.1139/g04-089. PMID   15729391.
  68. Moore CM, Dunn BG, McMahan CA, Lane MA, Roth GS, Ingram DK, Mattison JA (March 2007). "Effects of calorie restriction on chromosomal stability in rhesus monkeys (Macaca mulatta)". Age. 29 (1): 15–28. doi:10.1007/s11357-006-9016-6. PMC   2267682 . PMID   19424827.
  69. "Rnor_6.0 - Assembly - NCBI". www.ncbi.nlm.nih.gov.
  70. Diupotex-Chong ME, Ocaña-Luna A, Sánchez-Ramírez M (July 2009). "Chromosome analysis of Linné, 1758 (Scyphozoa: Ulmaridae), southern Gulf of Mexico". Marine Biology Research. 5 (4): 399–403. doi:10.1080/17451000802534907. S2CID   84514554.
  71. Geleta M, Herrera I, Monzón A, Bryngelsson T (2012). "Genetic diversity of arabica coffee (Coffea arabica L.) in Nicaragua as estimated by simple sequence repeat markers". TheScientificWorldJournal. 2012: 939820. doi: 10.1100/2012/939820 . PMC   3373144 . PMID   22701376.
  72. "Human Genome Project". National Center for Biotechnology Information . Retrieved 2009-04-29.
  73. Gallagher, D. S.; Davis, S. K.; De Donato, M.; Burzlaff, J. D.; Womack, J. E.; Taylor, J. F.; Kumamoto, A. T. (November 1998). "A karyotypic analysis of nilgai, Boselaphus tragocamelus (Artiodactyla: Bovidae)". Chromosome Research. 6 (7): 505–513. doi:10.1023/a:1009268917856. ISSN   0967-3849. PMID   9886771. S2CID   21120780.
  74. Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, et al. (November 2016). "The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion". eLife. 5. doi: 10.7554/eLife.20062 . PMC   5111886 . PMID   27849518.
  75. 1 2 Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, et al. (May 2014). "The tobacco genome sequence and its comparison with those of tomato and potato". Nature Communications. 5: 3833. Bibcode:2014NatCo...5.3833S. doi:10.1038/ncomms4833. PMC   4024737 . PMID   24807620.
  76. 1 2 Machida-Hirano R (March 2015). "Diversity of potato genetic resources". Breeding Science. 65 (1): 26–40. doi:10.1270/jsbbs.65.26. PMC   4374561 . PMID   25931978.
  77. Robinson TJ, Yang F, Harrison WR (2002). "Chromosome painting refines the history of genome evolution in hares and rabbits (order Lagomorpha)". Cytogenetic and Genome Research. 96 (1–4): 223–7. doi:10.1159/000063034. PMID   12438803. S2CID   19327437.
  78. "4.W4". Rabbits, Hares and Pikas. Status Survey and Conservation Action Plan. pp. 61–94. Archived from the original on 2011-05-05.
  79. Young WJ, Merz T, Ferguson-Smith MA, Johnston AW (June 1960). "Chromosome number of the chimpanzee, Pan troglodytes". Science. 131 (3414): 1672–3. Bibcode:1960Sci...131.1672Y. doi:10.1126/science.131.3414.1672. PMID   13846659. S2CID   36235641.
  80. Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, et al. (December 2000). "Zebrafish comparative genomics and the origins of vertebrate chromosomes". Genome Research. 10 (12): 1890–902. doi: 10.1101/gr.164800 . PMID   11116085.
  81. Anna Grzesiakowska; Przemysław Baran,2; Marta Kuchta-Gładysz; Olga Szeleszczuk1 (2019). "Cytogenetic Karyotype Analysis in Selected Species of the Erinaceidae Family". Journal of Veterinary Research. 63 (3): 353–358. doi:10.2478/jvetres-2019-0041. PMC   6749745 . PMID   31572815.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  82. Anna Grzesiakowska; Przemysław Baran; Marta Kuchta-Gładysz; Olga Szeleszczuk1 (2019). "Cytogenetic Karyotype Analysis in Selected Species of the Erinaceidae Family". Journal of Veterinary Research. 63 (3): 353–358. doi:10.2478/jvetres-2019-0041. PMC   6749745 . PMID   31572815.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  83. Brien S (2006). Atlas of mammalian chromosomes. Hoboken, NJ: Wiley-Liss. p. 2. ISBN   978-0-471-35015-6.
  84. Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, et al. (May 2008). "Genome analysis of the platypus reveals unique signatures of evolution". Nature. 453 (7192): 175–83. Bibcode:2008Natur.453..175W. doi:10.1038/nature06936. PMC   2803040 . PMID   18464734.
  85. 1 2 Chen H, Khan MK, Zhou Z, Wang X, Cai X, Ilyas MK, et al. (December 2015). "A high-density SSR genetic map constructed from a F2 population of Gossypium hirsutum and Gossypium darwinii". Gene. 574 (2): 273–86. doi:10.1016/j.gene.2015.08.022. PMID   26275937.
  86. "Hyrax: The Little Brother of the Elephant", Wildlife on One, BBC TV.
  87. O'Brien SJ, Meninger JC, Nash WG (2006). Atlas of Mammalian Chromosomes. John Wiley & sons. p. 78. ISBN   978-0-471-35015-6.
  88. 1 2 Mäkinen A, Kuokkanen MT, Valtonen M (1986). "A chromosome-banding study in the Finnish and the Japanese raccoon dog". Hereditas. 105 (1): 97–105. doi: 10.1111/j.1601-5223.1986.tb00647.x . PMID   3793521.
  89. Ostrander EA (1 January 2012). Genetics of the Dog. CABI. pp. 250–. ISBN   978-1-84593-941-0.
  90. Barnabe RC, Guimarães MA, Oliveira CA, Barnabe AH (2002). "Analysis of some normal parameters of the spermiogram of captive capuchin monkeys (Cebus apella Linnaeus, 1758 )" (PDF). Brazilian Journal of Veterinary Research and Animal Science. 39 (6). doi: 10.1590/S1413-95962002000600010 .
  91. Peigler, Richard S. ["Wild silks of the world." American Entomologist 39.3 (1993): 151–162. https://doi.org/10.1093/ae/39.3.151
  92. Yoshido A, Yasukochi Y, Sahara K (June 2011). "Samia cynthia versus Bombyx mori: comparative gene mapping between a species with a low-number karyotype and the model species of Lepidoptera" (PDF). Insect Biochemistry and Molecular Biology. 41 (6): 370–7. doi:10.1016/j.ibmb.2011.02.005. hdl: 2115/45607 . PMID   21396446. S2CID   38794541.
  93. Mahendran B, Ghosh SK, Kundu SC (April 2006). "Molecular phylogeny of silk-producing insects based on 16S ribosomal RNA and cytochrome oxidase subunit I genes". Journal of Genetics. 85 (1): 31–8. doi:10.1007/bf02728967. PMID   16809837. S2CID   11733404.
  94. Yoshido A, Bando H, Yasukochi Y, Sahara K (June 2005). "The Bombyx mori karyotype and the assignment of linkage groups". Genetics. 170 (2): 675–85. doi:10.1534/genetics.104.040352. PMC   1450397 . PMID   15802516.
  95. 1 2 Liu B, Davis TM (November 2011). "Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae)". BMC Plant Biology. 11: 157. doi: 10.1186/1471-2229-11-157 . PMC   3261831 . PMID   22074487.
  96. Claro, Françoise; Hayes, Hélène; Cribiu, Edmond Paul (November 1993). "The R- and G-Banded Karyotypes of the Sable Antelope (Hippotragus niger)". Journal of Heredity. 84 (6): 481–484. doi:10.1093/oxfordjournals.jhered.a111376. PMID   8270772 . Retrieved 6 March 2021.
  97. Seabury CM, Dowd SE, Seabury PM, Raudsepp T, Brightsmith DJ, Liboriussen P, et al. (2013). "A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao)". PLOS ONE. 8 (5): e62415. Bibcode:2013PLoSO...862415S. doi: 10.1371/journal.pone.0062415 . PMC   3648530 . PMID   23667475.
  98. 1 2 3 4 5 6 7 Sillero-Zubiri C, Hoffmann MJ, Mech D (2004). Canids: Foxes, Wolves, Jackals and Dogs: Status Survey and Conservation Action Plan. World Conservation Union. ISBN   978-2-8317-0786-0.[ page needed ]
  99. Rens W, O'Brien PC, Grützner F, Clarke O, Graphodatskaya D, Tsend-Ayush E, et al. (2007). "The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z". Genome Biology. 8 (11): R243. doi: 10.1186/gb-2007-8-11-r243 . PMC   2258203 . PMID   18021405.
  100. Svartman M, Stone G, Stanyon R (July 2006). "The ancestral eutherian karyotype is present in Xenarthra". PLOS Genetics. 2 (7): e109. doi: 10.1371/journal.pgen.0020109 . PMC   1513266 . PMID   16848642.
  101. de Oliveira EH, Tagliarini MM, dos Santos MS, O'Brien PC, Ferguson-Smith MA (2013). "Chromosome painting in three species of buteoninae: a cytogenetic signature reinforces the monophyly of South American species". PLOS ONE. 8 (7): e70071. Bibcode:2013PLoSO...870071D. doi: 10.1371/journal.pone.0070071 . PMC   3724671 . PMID   23922908.
  102. Smith HB (January 1927). "Chromosome Counts in the Varieties of SOLANUM TUBEROSUM and Allied Wild Species". Genetics. 12 (1): 84–92. doi:10.1093/genetics/12.1.84. PMC   1200928 . PMID   17246516.
  103. Li XL, Lin RS, Fung HL, Qi ZX, Song WQ, Chen RY (September 2001). "Chromosome numbers of some caespitose bamboos native in or introduced to China" 中国部分丛生竹类染色体数目报道 [Chromosome numbers of some caespitose bamboos native in or introduced to China]. Journal of Systematics and Evolution (in Chinese (China)). 39 (5): 433–442.
  104. Guttenbach M, Nanda I, Feichtinger W, Masabanda JS, Griffin DK, Schmid M (2003). "Comparative chromosome painting of chicken autosomal paints 1-9 in nine different bird species". Cytogenetic and Genome Research. 103 (1–2): 173–84. doi:10.1159/000076309. PMID   15004483. S2CID   23508684.
  105. "Canis lupus familiaris (dog)". www.ncbi.nlm.nih.gov.
  106. Maeda J, Yurkon CR, Fujisawa H, Kaneko M, Genet SC, Roybal EJ, et al. (2012). "Genomic instability and telomere fusion of canine osteosarcoma cells". PLOS ONE. 7 (8): e43355. Bibcode:2012PLoSO...743355M. doi: 10.1371/journal.pone.0043355 . PMC   3420908 . PMID   22916246.
  107. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. (December 2005). "Genome sequence, comparative analysis and haplotype structure of the domestic dog". Nature. 438 (7069): 803–19. Bibcode:2005Natur.438..803L. doi: 10.1038/nature04338 . PMID   16341006.
  108. Aslam ML, Bastiaansen JW, Crooijmans RP, Vereijken A, Megens HJ, Groenen MA (November 2010). "A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the turkey and chicken genomes". BMC Genomics. 11: 647. doi: 10.1186/1471-2164-11-647 . PMC   3091770 . PMID   21092123.
  109. 1 2 Wang J, Roe B, Macmil S, Yu Q, Murray JE, Tang H, et al. (April 2010). "Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes". BMC Genomics. 11: 261. doi: 10.1186/1471-2164-11-261 . PMC   2882929 . PMID   20416060.
  110. "Saccharum officinarum L. | Plants of the World Online | Kew Science" . Retrieved 2017-07-02.
  111. Henry RJ, Kole C (15 August 2010). Genetics, Genomics and Breeding of Sugarcane. CRC Press. p. 70. ISBN   978-1-4398-4860-9.
  112. Ohno S, Stenius C, Christian LC, Becak W, Becak ML (August 1964). "Chromosomal uniformity in the avian subclass Carinatae". Chromosoma. 15 (3): 280–8. doi:10.1007/BF00321513. PMID   14196875. S2CID   12310455.
  113. Roslik, G.V. and Kryukov A. (2001). A Karyological Study of Some Corvine Birds (Corvidae, Aves). Russian Journal of Genetics 37(7):796-806. DOI: 10.1023/A:1016703127516
  114. Gregory, T.R. (2015). Animal Genome Size Database. http://www.genomesize.com/result_species.php?id=1701
  115. Akbarzadeh, M.; Van Laere, K.; Leus, L.; De Riek, J.; Van Huylenbroeck, J.; Werbrouck, S. P.; Dhooghe, E. (2021). "Can Knowledge of Genetic Distances, Genome Sizes and Chromosome Numbers Support Breeding Programs in Hardy Geraniums?". Genes. 12 (5): 730. doi: 10.3390/genes12050730 . PMC   8152959 . PMID   34068148.
  116. 1 2 Schmid M, Fernández-Badillo A, Feichtinger W, Steinlein C, Roman JI (1988). "On the highest chromosome number in mammals". Cytogenetics and Cell Genetics. 49 (4): 305–8. doi:10.1159/000132683. PMID   3073914.
  117. Hosseini SJ, Elahi E, Raie RM (2004). "The Chromosome Number of the Persian Gulf Shrimp Penaeus semisulcatus". Iranian Int. J. Sci. 5 (1): 13–23.
  118. Spoz A, Boron A, Porycka K, Karolewska M, Ito D, Abe S, et al. (2014). "Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes". Comparative Cytogenetics. 8 (3): 233–48. doi: 10.3897/CompCytogen.v8i3.7718 . PMC   4205492 . PMID   25349674.
  119. Gallardo MH, Bickham JW, Honeycutt RL, Ojeda RA, Köhler N (September 1999). "Discovery of tetraploidy in a mammal". Nature. 401 (6751): 341. Bibcode:1999Natur.401..341G. doi: 10.1038/43815 . PMID   10517628. S2CID   1808633.
  120. Gallardo MH, González CA, Cebrián I (August 2006). "Molecular cytogenetics and allotetraploidy in the red vizcacha rat, Tympanoctomys barrerae (Rodentia, Octodontidae)". Genomics. 88 (2): 214–21. doi: 10.1016/j.ygeno.2006.02.010 . PMID   16580173.
  121. Contreras LC, Torres-Mura JC, Spotorno AE (May 1990). "The largest known chromosome number for a mammal, in a South American desert rodent". Experientia. 46 (5): 506–8. doi:10.1007/BF01954248. PMID   2347403. S2CID   33553988.
  122. Maneechot N, Yano CF, Bertollo LA, Getlekha N, Molina WF, Ditcharoen S, et al. (2016). "Genomic organization of repetitive DNAs highlights chromosomal evolution in the genus Clarias (Clariidae, Siluriformes)". Molecular Cytogenetics. 9: 4. doi: 10.1186/s13039-016-0215-2 . PMC   4719708 . PMID   26793275.
  123. Symonová R, Havelka M, Amemiya CT, Howell WM, Kořínková T, Flajšhans M, et al. (March 2017). "Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula)". BMC Genetics. 18 (1): 19. doi: 10.1186/s12863-017-0484-8 . PMC   5335500 . PMID   28253860.
  124. "Chromosome numbers of Polish ferns". researchgate.net.
  125. Islam-Faridi N, Sakhanokho HF, Dana Nelson C (August 2020). "New chromosome number and cyto-molecular characterization of the African Baobab (Adansonia digitata L.) - "The Tree of Life"". Scientific Reports. 10 (1): 13174. Bibcode:2020NatSR..1013174I. doi: 10.1038/s41598-020-68697-6 . PMC   7413363 . PMID   32764541.
  126. Eschmeyer WM. "Family Petromyzontidae – Northern lampreys".
  127. Flora of North America Editorial Committee (1993). Flora of North America. Missouri Botanical Garden, St. Louis.
  128. Lukhtanov VA, Kandul NP, Plotkin JB, Dantchenko AV, Haig D, Pierce NE (July 2005). "Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies". Nature. 436 (7049): 385–9. Bibcode:2005Natur.436..385L. doi:10.1038/nature03704. PMID   16034417. S2CID   4431492.
  129. "Morus nigra (black mulberry)". www.cabi.org. Retrieved 2020-08-29.
  130. Zeng Q, Chen H, Zhang C, Han M, Li T, Qi X, et al. (2015). "Definition of Eight Mulberry Species in the Genus Morus by Internal Transcribed Spacer-Based Phylogeny". PLOS ONE. 10 (8): e0135411. Bibcode:2015PLoSO..1035411Z. doi: 10.1371/journal.pone.0135411 . PMC   4534381 . PMID   26266951.
  131. 1 2 Lukhtanov VA (2015). "The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms". Comparative Cytogenetics. 9 (4): 683–90. doi: 10.3897/CompCytogen.v9i4.5760 . PMC   4698580 . PMID   26753083.
  132. Lukhtanov VA (2015-07-10). "The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms". Comparative Cytogenetics. 9 (4): 683–90. doi: 10.3897/compcytogen.v9i4.5760 . PMC   4698580 . PMID   26753083.
  133. Sinha BM, Srivastava DP, Jha J (1979). "Occurrence of Various Cytotypes of Ophioglossum ReticulatumL. In a Population from N. E. India". Caryologia. 32 (2): 135–146. doi: 10.1080/00087114.1979.10796781 .
  134. Mochizuki K (2010). "DNA rearrangements directed by non-coding RNAs in ciliates". Wiley Interdisciplinary Reviews. RNA. 1 (3): 376–87. doi:10.1002/wrna.34. PMC   3746294 . PMID   21956937.
  135. Miller, Greg (17 September 2014). "This Bizarre Organism Builds Itself a New Genome Every Time It Has Sex". Wired. Retrieved 1 June 2021.
  136. Kumar S, Kumari R (June 2015). "Origin, structure and function of millions of chromosomes present in the macronucleus of unicellular eukaryotic ciliate, Oxytricha trifallax: a model organism for transgenerationally programmed genome rearrangements". Journal of Genetics. 94 (2): 171–6. doi:10.1007/s12041-015-0504-2. PMID   26174664. S2CID   14181659.
  137. Swart EC, Bracht JR, Magrini V, Minx P, Chen X, Zhou Y, et al. (2013-01-29). "The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes". PLOS Biology. 11 (1): e1001473. doi: 10.1371/journal.pbio.1001473 . PMC   3558436 . PMID   23382650.
  138. Yong E (6 February 2013). "You Have 46 Chromosomes. This Pond Creature Has 15,600". National Geographic. Archived from the original on February 8, 2013.
  139. Avarello R, Pedicini A, Caiulo A, Zuffardi O, Fraccaro M (May 1992). "Evidence for an ancestral alphoid domain on the long arm of human chromosome 2". Human Genetics. 89 (2): 247–9. doi:10.1007/BF00217134. PMID   1587535. S2CID   1441285.

Further reading