List of regular polytopes

Last updated

Example regular polytopes
Regular (2D) polygons
ConvexStar
Regular pentagon.svg
{5}
Star polygon 5-2.svg
{5/2}
Regular (3D) polyhedra
ConvexStar
Dodecahedron.png
{5,3}
Small stellated dodecahedron.png
{5/2,5}
Regular 4D polytopes
ConvexStar
Schlegel wireframe 120-cell.png
{5,3,3}
Ortho solid 010-uniform polychoron p53-t0.png
{5/2,5,3}
Regular 2D tessellations
EuclideanHyperbolic
Uniform tiling 44-t0.svg
{4,4}
H2-5-4-dual.svg
{5,4}
Regular 3D tessellations
EuclideanHyperbolic
Cubic honeycomb.png
{4,3,4}
Hyperbolic orthogonal dodecahedral honeycomb.png
{5,3,4}

This article lists the regular polytopes in Euclidean, spherical and hyperbolic spaces.

Contents

Overview

This table shows a summary of regular polytope counts by rank.

RankFiniteEuclideanHyperbolicAbstract
CompactParacompact
ConvexStarSkew [lower-alpha 1] [1] ConvexSkew [lower-alpha 1] [1] ConvexStarConvex
11nonenonenonenonenonenonenone1
2none1none1nonenone
354933
461018174none11
53none3315542
63none317nonenone5
7+3none317nonenonenone
  1. 1 2 Only counting polytopes of full rank. There are more regular polytopes of each rank > 1 in higher dimensions.

There are no Euclidean regular star tessellations in any number of dimensions.

1-polytopes

Coxeter node markup1.png A Coxeter diagram represent mirror "planes" as nodes, and puts a ring around a node if a point is not on the plane. A dion { }, CDel node 1.png, is a point p and its mirror image point p', and the line segment between them.

There is only one polytope of rank 1 (1-polytope), the closed line segment bounded by its two endpoints. Every realization of this 1-polytope is regular. It has the Schläfli symbol { }, [2] [3] or a Coxeter diagram with a single ringed node, CDel node 1.png. Norman Johnson calls it a dion [4] and gives it the Schläfli symbol { }.

Although trivial as a polytope, it appears as the edges of polygons and other higher dimensional polytopes. [5] It is used in the definition of uniform prisms like Schläfli symbol { }×{p}, or Coxeter diagram CDel node 1.pngCDel 2.pngCDel node 1.pngCDel p.pngCDel node.png as a Cartesian product of a line segment and a regular polygon. [6]

2-polytopes (polygons)

The polytopes of rank 2 (2-polytopes) are called polygons. Regular polygons are equilateral and cyclic. A p-gonal regular polygon is represented by Schläfli symbol {p}.

Many sources only consider convex polygons, but star polygons, like the pentagram, when considered, can also be regular. They use the same vertices as the convex forms, but connect in an alternate connectivity which passes around the circle more than once to be completed.

Convex

The Schläfli symbol {p} represents a regular p-gon.

Name Triangle
(2-simplex)
Square
(2-orthoplex)
(2-cube)
Pentagon
(2-pentagonal
polytope
)
Hexagon Heptagon Octagon
Schläfli {3}{4}{5}{6}{7}{8}
SymmetryD3, [3]D4, [4]D5, [5]D6, [6]D7, [7]D8, [8]
Coxeter CDel node 1.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node 1.pngCDel 7.pngCDel node.pngCDel node 1.pngCDel 8.pngCDel node.png
Image Regular triangle.svg Regular quadrilateral.svg Regular pentagon.svg Regular hexagon.svg Regular heptagon.svg Regular octagon.svg
Name Nonagon
(Enneagon)
Decagon Hendecagon Dodecagon Tridecagon Tetradecagon
Schläfli{9}{10}{11}{12}{13}{14}
SymmetryD9, [9]D10, [10]D11, [11]D12, [12]D13, [13]D14, [14]
DynkinCDel node 1.pngCDel 9.pngCDel node.pngCDel node 1.pngCDel 10.pngCDel node.pngCDel node 1.pngCDel 11.pngCDel node.pngCDel node 1.pngCDel 12.pngCDel node.pngCDel node 1.pngCDel 13.pngCDel node.pngCDel node 1.pngCDel 14.pngCDel node.png
Image Regular nonagon.svg Regular decagon.svg Regular hendecagon.svg Regular dodecagon.svg Regular tridecagon.svg Regular tetradecagon.svg
Name Pentadecagon Hexadecagon Heptadecagon Octadecagon Enneadecagon Icosagon ...p-gon
Schläfli{15}{16}{17}{18}{19}{20}{p}
SymmetryD15, [15]D16, [16]D17, [17]D18, [18]D19, [19]D20, [20]Dp, [p]
DynkinCDel node 1.pngCDel 15.pngCDel node.pngCDel node 1.pngCDel 16.pngCDel node.pngCDel node 1.pngCDel 17.pngCDel node.pngCDel node 1.pngCDel 18.pngCDel node.pngCDel node 1.pngCDel 19.pngCDel node.pngCDel node 1.pngCDel 20.pngCDel node.pngCDel node 1.pngCDel p.pngCDel node.png
Image Regular pentadecagon.svg Regular hexadecagon.svg Regular heptadecagon.svg Regular octadecagon.svg Regular enneadecagon.svg Regular icosagon.svg Disk 1.svg

Spherical

The regular digon {2} can be considered to be a degenerate regular polygon. It can be realized non-degenerately in some non-Euclidean spaces, such as on the surface of a sphere or torus. For example, digon can be realised non-degenerately as a spherical lune. A monogon {1} could also be realised on the sphere as a single point with a great circle through it. [7] However, a monogon is not a valid abstract polytope because its single edge is incident to only one vertex rather than two.

Name Monogon Digon
Schläfli symbol {1}{2}
SymmetryD1, [ ]D2, [2]
Coxeter diagram CDel node.png or CDel node h.pngCDel 2x.pngCDel node.pngCDel node 1.pngCDel 2x.pngCDel node.png
Image Monogon.svg Digon.svg

Stars

There exist infinitely many regular star polytopes in two dimensions, whose Schläfli symbols consist of rational numbers {n/m}. They are called star polygons and share the same vertex arrangements of the convex regular polygons.

In general, for any natural number n, there are regular n-pointed stars with Schläfli symbols {n/m} for all m such that m < n/2 (strictly speaking {n/m} = {n/(nm)}) and m and n are coprime (as such, all stellations of a polygon with a prime number of sides will be regular stars). Symbols where m and n are not coprime may be used to represent compound polygons.

Name Pentagram Heptagrams Octagram Enneagrams Decagram ...n-grams
Schläfli {5/2}{7/2}{7/3}{8/3}{9/2}{9/4}{10/3}{p/q}
SymmetryD5, [5]D7, [7]D8, [8]D9, [9],D10, [10]Dp, [p]
Coxeter CDel node 1.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel node 1.pngCDel 7.pngCDel rat.pngCDel d2.pngCDel node.pngCDel node 1.pngCDel 7.pngCDel rat.pngCDel d3.pngCDel node.pngCDel node 1.pngCDel 8.pngCDel rat.pngCDel d3.pngCDel node.pngCDel node 1.pngCDel 9.pngCDel rat.pngCDel d2.pngCDel node.pngCDel node 1.pngCDel 9.pngCDel rat.pngCDel d4.pngCDel node.pngCDel node 1.pngCDel 10.pngCDel rat.pngCDel d3.pngCDel node.pngCDel node 1.pngCDel p.pngCDel rat.pngCDel dq.pngCDel node.png
Image Star polygon 5-2.svg Star polygon 7-2.svg Star polygon 7-3.svg Star polygon 8-3.svg Star polygon 9-2.svg Star polygon 9-4.svg Star polygon 10-3.svg  
Regular star polygons up to 20 sides
Regular star polygon 11-2.svg
{11/2}
Regular star polygon 11-3.svg
{11/3}
Regular star polygon 11-4.svg
{11/4}
Regular star polygon 11-5.svg
{11/5}
Regular star polygon 12-5.svg
{12/5}
Regular star polygon 13-2.svg
{13/2}
Regular star polygon 13-3.svg
{13/3}
Regular star polygon 13-4.svg
{13/4}
Regular star polygon 13-5.svg
{13/5}
Regular star polygon 13-6.svg
{13/6}
Regular star polygon 14-3.svg
{14/3}
Regular star polygon 14-5.svg
{14/5}
Regular star polygon 15-2.svg
{15/2}
Regular star polygon 15-4.svg
{15/4}
Regular star polygon 15-7.svg
{15/7}
Regular star polygon 16-3.svg
{16/3}
Regular star polygon 16-5.svg
{16/5}
Regular star polygon 16-7.svg
{16/7}
Regular star polygon 17-2.svg
{17/2}
Regular star polygon 17-3.svg
{17/3}
Regular star polygon 17-4.svg
{17/4}
Regular star polygon 17-5.svg
{17/5}
Regular star polygon 17-6.svg
{17/6}
Regular star polygon 17-7.svg
{17/7}
Regular star polygon 17-8.svg
{17/8}
Regular star polygon 18-5.svg
{18/5}
Regular star polygon 18-7.svg
{18/7}
Regular star polygon 19-2.svg
{19/2}
Regular star polygon 19-3.svg
{19/3}
Regular star polygon 19-4.svg
{19/4}
Regular star polygon 19-5.svg
{19/5}
Regular star polygon 19-6.svg
{19/6}
Regular star polygon 19-7.svg
{19/7}
Regular star polygon 19-8.svg
{19/8}
Regular star polygon 19-9.svg
{19/9}
Regular star polygon 20-3.svg
{20/3}
Regular star polygon 20-7.svg
{20/7}
Regular star polygon 20-9.svg
{20/9}

Star polygons that can only exist as spherical tilings, similarly to the monogon and digon, may exist (for example: {3/2}, {5/3}, {5/4}, {7/4}, {9/5}), however these do not appear to have been studied in detail.

There also exist failed star polygons, such as the piangle, which do not cover the surface of a circle finitely many times. [8]

Skew polygons

In addition to the planar regular polygons there are infinitely many regular skew polygons. Skew polygons can be created via the blending operation.

The blend of two polygons P and Q, written P#Q, can be constructed as follows:

  1. take the cartesian product of their vertices VP×VQ.
  2. add edges (p0×q0, p1×q1) where (p0, p1) is an edge of P and (q0, q1) is an edge of Q.
  3. select an arbitrary connected component of the result.

Alternatively, the blend is the polygon ρ0σ0, ρ1σ1 where ρ and σ are the generating mirrors of P and Q placed in orthogonal subspaces. [9] The blending operation is commutative, associative and idempotent.

Every regular skew polygon can be expressed as the blend of a unique [lower-alpha 1] set of planar polygons. [9] If P and Q share no factors then Dim(P#Q) = Dim(P) + Dim(Q).

In 3 space

The regular finite polygons in 3 dimensions are exactly the blends of the planar polygons (dimension 2) with the digon (dimension 1). They have vertices corresponding to a prism ({n/m}#{} where n is odd) or an antiprism ({n/m}#{} where n is even). All polygons in 3 space have an even number of vertices and edges.

Several of these appear as the Petrie polygons of regular polyhedra.

In 4 space

The regular finite polygons in 4 dimensions are exactly the polygons formed as a blend of two distinct planar polygons. They have vertices lying on a Clifford torus and related by a Clifford displacement. Unlike 3-dimensional polygons, skew polygons on double rotations can include an odd-number of sides.

3-polytopes (polyhedra)

Polytopes of rank 3 are called polyhedra:

A regular polyhedron with Schläfli symbol {p, q}, Coxeter diagrams CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png, has a regular face type {p}, and regular vertex figure {1}.

A vertex figure (of a polyhedron) is a polygon, seen by connecting those vertices which are one edge away from a given vertex. For regular polyhedra, this vertex figure is always a regular (and planar) polygon.

Existence of a regular polyhedron {p, q} is constrained by an inequality, related to the vertex figure's angle defect:

By enumerating the permutations, we find five convex forms, four star forms and three plane tilings, all with polygons {p} and {q} limited to: {3}, {4}, {5}, {5/2}, and {6}.

Beyond Euclidean space, there is an infinite set of regular hyperbolic tilings.

Convex

The five convex regular polyhedra are called the Platonic solids. The vertex figure is given with each vertex count. All these polyhedra have an Euler characteristic (χ) of 2.

Name Schläfli
{p, q}
Coxeter
CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png
Image
(solid)
Image
(sphere)
Faces
{p}
Edges Vertices
{q}
Symmetry Dual
Tetrahedron
(3-simplex)
{3,3}CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png Polyhedron 4b.png Uniform tiling 332-t2.png 4
{3}
64
{3}
Td
[3,3]
(*332)
(self)
Hexahedron
Cube
(3-cube)
{4,3}CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png Polyhedron 6.png Uniform tiling 432-t0.png 6
{4}
128
{3}
Oh
[4,3]
(*432)
Octahedron
Octahedron
(3-orthoplex)
{3,4}CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png Polyhedron 8.png Uniform tiling 432-t2.png 8
{3}
126
{4}
Oh
[4,3]
(*432)
Cube
Dodecahedron {5,3}CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png Polyhedron 12.png Uniform tiling 532-t0.png 12
{5}
3020
{3}
Ih
[5,3]
(*532)
Icosahedron
Icosahedron {3,5}CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png Polyhedron 20.png Uniform tiling 532-t2.png 20
{3}
3012
{5}
Ih
[5,3]
(*532)
Dodecahedron

Spherical

In spherical geometry, regular spherical polyhedra (tilings of the sphere) exist that would otherwise be degenerate as polytopes. These are the hosohedra {2,n} and their dual dihedra {n,2}. Coxeter calls these cases "improper" tessellations. [10]

The first few cases (n from 2 to 6) are listed below.

Hosohedra
Name Schläfli
{2,p}
Coxeter
diagram
Image
(sphere)
Faces
{2}π/p
Edges Vertices
{p}
Symmetry Dual
Digonal hosohedron{2,2}CDel node 1.pngCDel 2x.pngCDel node.pngCDel 2x.pngCDel node.png Spherical digonal hosohedron.svg 2
{2}π/2
22
{2}π/2
D2h
[2,2]
(*222)
Self
Trigonal hosohedron{2,3}CDel node 1.pngCDel 2x.pngCDel node.pngCDel 3.pngCDel node.png Spherical trigonal hosohedron.svg 3
{2}π/3
32
{3}
D3h
[2,3]
(*322)
Trigonal dihedron
Square hosohedron{2,4}CDel node 1.pngCDel 2x.pngCDel node.pngCDel 4.pngCDel node.png Spherical square hosohedron.svg 4
{2}π/4
42
{4}
D4h
[2,4]
(*422)
Square dihedron
Pentagonal hosohedron{2,5}CDel node 1.pngCDel 2x.pngCDel node.pngCDel 5.pngCDel node.png Spherical pentagonal hosohedron.svg 5
{2}π/5
52
{5}
D5h
[2,5]
(*522)
Pentagonal dihedron
Hexagonal hosohedron{2,6}CDel node 1.pngCDel 2x.pngCDel node.pngCDel 6.pngCDel node.png Spherical hexagonal hosohedron.svg 6
{2}π/6
62
{6}
D6h
[2,6]
(*622)
Hexagonal dihedron
Dihedra
Name Schläfli
{p,2}
Coxeter
diagram
Image
(sphere)
Faces
{p}
Edges Vertices
{2}
Symmetry Dual
Digonal dihedron{2,2}CDel node 1.pngCDel 2x.pngCDel node.pngCDel 2x.pngCDel node.png Digonal dihedron.png 2
{2}π/2
22
{2}π/2
D2h
[2,2]
(*222)
Self
Trigonal dihedron{3,2}CDel node 1.pngCDel 3.pngCDel node.pngCDel 2x.pngCDel node.png Trigonal dihedron.png 2
{3}
33
{2}π/3
D3h
[3,2]
(*322)
Trigonal hosohedron
Square dihedron{4,2}CDel node 1.pngCDel 4.pngCDel node.pngCDel 2x.pngCDel node.png Tetragonal dihedron.png 2
{4}
44
{2}π/4
D4h
[4,2]
(*422)
Square hosohedron
Pentagonal dihedron{5,2}CDel node 1.pngCDel 5.pngCDel node.pngCDel 2x.pngCDel node.png Pentagonal dihedron.png 2
{5}
55
{2}π/5
D5h
[5,2]
(*522)
Pentagonal hosohedron
Hexagonal dihedron{6,2}CDel node 1.pngCDel 6.pngCDel node.pngCDel 2x.pngCDel node.png Hexagonal dihedron.png 2
{6}
66
{2}π/6
D6h
[6,2]
(*622)
Hexagonal hosohedron

Star-dihedra and hosohedra {p/q, 2} and {2, p/q} also exist for any star polygon {p/q}.

Stars

The regular star polyhedra are called the Kepler–Poinsot polyhedra and there are four of them, based on the vertex arrangements of the dodecahedron {5,3} and icosahedron {3,5}:

As spherical tilings, these star forms overlap the sphere multiple times, called its density, being 3 or 7 for these forms. The tiling images show a single spherical polygon face in yellow.

NameImage
(skeletonic)
Image
(solid)
Image
(sphere)
Stellation
diagram
Schläfli
{p, q} and
Coxeter
Faces
{p}
EdgesVertices
{q}
verf.
χ Density Symmetry Dual
Small stellated dodecahedron Skeleton St12, size m.png Small stellated dodecahedron (gray with yellow face).svg Small stellated dodecahedron tiling.png First stellation of dodecahedron facets.svg {5/2,5}
CDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node 1.png
12
{5/2}
Star polygon 5-2.svg
3012
{5}
Regular pentagon.svg
−63Ih
[5,3]
(*532)
Great dodecahedron
Great dodecahedron Skeleton Gr12, size m.png Great dodecahedron (gray with yellow face).svg Great dodecahedron tiling.svg Second stellation of dodecahedron facets.svg {5,5/2}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png
12
{5}
Regular pentagon.svg
3012
{5/2}
Star polygon 5-2.svg
−63Ih
[5,3]
(*532)
Small stellated dodecahedron
Great stellated dodecahedron Skeleton GrSt12, size s.png Great stellated dodecahedron (gray with yellow face).svg Great stellated dodecahedron tiling.svg Third stellation of dodecahedron facets.svg {5/2,3}
CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node 1.png
12
{5/2}
Star polygon 5-2.svg
3020
{3}
Regular triangle.svg
27Ih
[5,3]
(*532)
Great icosahedron
Great icosahedron Skeleton Gr20, size m.png Great icosahedron (gray with yellow face).svg Great icosahedron tiling.svg Great icosahedron stellation facets.svg {3,5/2}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png
20
{3}
Regular triangle.svg
3012
{5/2}
Star polygon 5-2.svg
27Ih
[5,3]
(*532)
Great stellated dodecahedron

There are infinitely many failed star polyhedra. These are also spherical tilings with star polygons in their Schläfli symbols, but they do not cover a sphere finitely many times. Some examples are {5/2,4}, {5/2,9}, {7/2,3}, {5/2,5/2}, {7/2,7/3}, {4,5/2}, and {3,7/3}.

Skew polyhedra

Regular skew polyhedra are generalizations to the set of regular polyhedron which include the possibility of nonplanar vertex figures.

For 4-dimensional skew polyhedra, Coxeter offered a modified Schläfli symbol {l,m|n} for these figures, with {l,m} implying the vertex figure, m l-gons around a vertex, and n-gonal holes. Their vertex figures are skew polygons, zig-zagging between two planes.

The regular skew polyhedra, represented by {l,m|n}, follow this equation:

Four of them can be seen in 4-dimensions as a subset of faces of four regular 4-polytopes, sharing the same vertex arrangement and edge arrangement:

4-simplex t03.svg 4-simplex t12.svg 24-cell t03 F4.svg 24-cell t12 F4.svg
{4, 6 | 3}{6, 4 | 3}{4, 8 | 3}{8, 4 | 3}

4-polytopes

Regular 4-polytopes with Schläfli symbol have cells of type , faces of type , edge figures , and vertex figures .

The existence of a regular 4-polytope is constrained by the existence of the regular polyhedra . A suggested name for 4-polytopes is "polychoron". [11]

Each will exist in a space dependent upon this expression:

 : Hyperspherical 3-space honeycomb or 4-polytope
 : Euclidean 3-space honeycomb
 : Hyperbolic 3-space honeycomb

These constraints allow for 21 forms: 6 are convex, 10 are nonconvex, one is a Euclidean 3-space honeycomb, and 4 are hyperbolic honeycombs.

The Euler characteristic for convex 4-polytopes is zero:

Convex

The 6 convex regular 4-polytopes are shown in the table below. All these 4-polytopes have an Euler characteristic (χ) of 0.

Name
Schläfli
{p,q,r}
Coxeter
CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.png
Cells
{p,q}
Faces
{p}
Edges
{r}
Vertices
{q,r}
Dual
{r,q,p}
5-cell
(4-simplex)
{3,3,3}CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png5
{3,3}
10
{3}
10
{3}
5
{3,3}
(self)
8-cell
(4-cube)
(Tesseract)
{4,3,3}CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png8
{4,3}
24
{4}
32
{3}
16
{3,3}
16-cell
16-cell
(4-orthoplex)
{3,3,4}CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png16
{3,3}
32
{3}
24
{4}
8
{3,4}
Tesseract
24-cell {3,4,3}CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png24
{3,4}
96
{3}
96
{3}
24
{4,3}
(self)
120-cell {5,3,3}CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png120
{5,3}
720
{5}
1200
{3}
600
{3,3}
600-cell
600-cell {3,3,5}CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png600
{3,3}
1200
{3}
720
{5}
120
{3,5}
120-cell
5-cell 8-cell 16-cell 24-cell 120-cell 600-cell
{3,3,3}{4,3,3}{3,3,4}{3,4,3}{5,3,3}{3,3,5}
Wireframe (Petrie polygon) skew orthographic projections
Complete graph K5.svg 4-cube graph.svg 4-orthoplex.svg 24-cell graph F4.svg Cell120Petrie.svg Cell600Petrie.svg
Solid orthographic projections
Tetrahedron.png
tetrahedral
envelope
(cell/
vertex-centered)
Hexahedron.png
cubic envelope
(cell-centered)
16-cell ortho cell-centered.png
cubic envelope
(cell-centered)
Ortho solid 24-cell.png
cuboctahedral
envelope

(cell-centered)
Ortho solid 120-cell.png
truncated rhombic
triacontahedron
envelope

(cell-centered)
Ortho solid 600-cell.png
Pentakis
icosidodecahedral

envelope
(vertex-centered)
Wireframe Schlegel diagrams (Perspective projection)
Schlegel wireframe 5-cell.png
(cell-centered)
Schlegel wireframe 8-cell.png
(cell-centered)
Schlegel wireframe 16-cell.png
(cell-centered)
Schlegel wireframe 24-cell.png
(cell-centered)
Schlegel wireframe 120-cell.png
(cell-centered)
Schlegel wireframe 600-cell vertex-centered.png
(vertex-centered)
Wireframe stereographic projections (Hyperspherical)
Stereographic polytope 5cell.png Stereographic polytope 8cell.png Stereographic polytope 16cell.png Stereographic polytope 24cell.png Stereographic polytope 120cell.png Stereographic polytope 600cell.png

Spherical

Di-4-topes and hoso-4-topes exist as regular tessellations of the 3-sphere.

Regular di-4-topes (2 facets) include: {3,3,2}, {3,4,2}, {4,3,2}, {5,3,2}, {3,5,2}, {p,2,2}, and their hoso-4-tope duals (2 vertices): {2,3,3}, {2,4,3}, {2,3,4}, {2,3,5}, {2,5,3}, {2,2,p}. 4-polytopes of the form {2,p,2} are the same as {2,2,p}. There are also the cases {p,2,q} which have dihedral cells and hosohedral vertex figures.

Regular hoso-4-topes as 3-sphere honeycombs
Schläfli
{2,p,q}
Coxeter
CDel node 1.pngCDel 2x.pngCDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png
Cells
{2,p}π/q
Faces
{2}π/p,π/q
Edges Vertices Vertex figure
{p,q}
Symmetry Dual
{2,3,3}CDel node 1.pngCDel 2x.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png4
{2,3}π/3
Spherical trigonal hosohedron.svg
6
{2}π/3,π/3
42{3,3}
Uniform tiling 332-t0-1-.png
[2,3,3]{3,3,2}
{2,4,3}CDel node 1.pngCDel 2x.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png6
{2,4}π/3
Spherical square hosohedron.svg
12
{2}π/4,π/3
82{4,3}
Uniform tiling 432-t0.png
[2,4,3]{3,4,2}
{2,3,4}CDel node 1.pngCDel 2x.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png8
{2,3}π/4
Spherical trigonal hosohedron.svg
12
{2}π/3,π/4
62{3,4}
Uniform tiling 432-t2.png
[2,4,3]{4,3,2}
{2,5,3}CDel node 1.pngCDel 2x.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png12
{2,5}π/3
Spherical trigonal hosohedron.svg
30
{2}π/5,π/3
202{5,3}
Uniform tiling 532-t0.png
[2,5,3]{3,5,2}
{2,3,5}CDel node 1.pngCDel 2x.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png20
{2,3}π/5
Spherical pentagonal hosohedron.svg
30
{2}π/3,π/5
122{3,5}
Uniform tiling 532-t2.png
[2,5,3]{5,3,2}

Stars

There are ten regular star 4-polytopes, which are called the Schläfli–Hess 4-polytopes. Their vertices are based on the convex 120-cell {5,3,3} and 600-cell {3,3,5}.

Ludwig Schläfli found four of them and skipped the last six because he would not allow forms that failed the Euler characteristic on cells or vertex figures (for zero-hole tori: F+V−E=2). Edmund Hess (1843–1903) completed the full list of ten in his German book Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder (1883).

There are 4 unique edge arrangements and 7 unique face arrangements from these 10 regular star 4-polytopes, shown as orthogonal projections:

Name
WireframeSolid Schläfli
{p, q, r}
Coxeter
Cells
{p, q}
Faces
{p}
Edges
{r}
Vertices
{q, r}
Density χ Symmetry group Dual
{r, q,p}
Icosahedral 120-cell
(faceted 600-cell)
Schlafli-Hess polychoron-wireframe-3.png Ortho solid 007-uniform polychoron 35p-t0.png {3,5,5/2}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png
120
{3,5}
Icosahedron.png
1200
{3}
Regular triangle.svg
720
{5/2}
Star polygon 5-2.svg
120
{5,5/2}
Great dodecahedron.png
4480H4
[5,3,3]
Small stellated 120-cell
Small stellated 120-cell Schlafli-Hess polychoron-wireframe-2.png Ortho solid 010-uniform polychoron p53-t0.png {5/2,5,3}
CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node 1.png
120
{5/2,5}
Small stellated dodecahedron.png
720
{5/2}
Star polygon 5-2.svg
1200
{3}
Regular triangle.svg
120
{5,3}
Dodecahedron.png
4−480H4
[5,3,3]
Icosahedral 120-cell
Great 120-cell Schlafli-Hess polychoron-wireframe-3.png Ortho solid 008-uniform polychoron 5p5-t0.png {5,5/2,5}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 5.pngCDel node.png
120
{5,5/2}
Great dodecahedron.png
720
{5}
Regular pentagon.svg
720
{5}
Regular pentagon.svg
120
{5/2,5}
Small stellated dodecahedron.png
60H4
[5,3,3]
Self-dual
Grand 120-cell Schlafli-Hess polychoron-wireframe-3.png Ortho solid 009-uniform polychoron 53p-t0.png {5,3,5/2}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png
120
{5,3}
Dodecahedron.png
720
{5}
Regular pentagon.svg
720
{5/2}
Star polygon 5-2.svg
120
{3,5/2}
Great icosahedron.png
200H4
[5,3,3]
Great stellated 120-cell
Great stellated 120-cell Schlafli-Hess polychoron-wireframe-4.png Ortho solid 012-uniform polychoron p35-t0.png {5/2,3,5}
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node 1.png
120
{5/2,3}
Great stellated dodecahedron.png
720
{5/2}
Star polygon 5-2.svg
720
{5}
Regular pentagon.svg
120
{3,5}
Icosahedron.png
200H4
[5,3,3]
Grand 120-cell
Grand stellated 120-cell Schlafli-Hess polychoron-wireframe-4.png Ortho solid 013-uniform polychoron p5p-t0.png {5/2,5,5/2}
CDel node 1.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png
120
{5/2,5}
Small stellated dodecahedron.png
720
{5/2}
Star polygon 5-2.svg
720
{5/2}
Star polygon 5-2.svg
120
{5,5/2}
Great dodecahedron.png
660H4
[5,3,3]
Self-dual
Great grand 120-cell Schlafli-Hess polychoron-wireframe-2.png Ortho solid 011-uniform polychoron 53p-t0.png {5,5/2,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 3.pngCDel node.png
120
{5,5/2}
Great dodecahedron.png
720
{5}
Regular pentagon.svg
1200
{3}
Regular triangle.svg
120
{5/2,3}
Great stellated dodecahedron.png
76−480H4
[5,3,3]
Great icosahedral 120-cell
Great icosahedral 120-cell
(great faceted 600-cell)
Schlafli-Hess polychoron-wireframe-4.png Ortho solid 014-uniform polychoron 3p5-t0.png {3,5/2,5}
CDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 3.pngCDel node 1.png
120
{3,5/2}
Great icosahedron.png
1200
{3}
Regular triangle.svg
720
{5}
Regular pentagon.svg
120
{5/2,5}
Small stellated dodecahedron.png
76480H4
[5,3,3]
Great grand 120-cell
Grand 600-cell Schlafli-Hess polychoron-wireframe-4.png Ortho solid 015-uniform polychoron 33p-t0.png {3,3,5/2}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png
600
{3,3}
Tetrahedron.png
1200
{3}
Regular triangle.svg
720
{5/2}
Star polygon 5-2.svg
120
{3,5/2}
Great icosahedron.png
1910H4
[5,3,3]
Great grand stellated 120-cell
Great grand stellated 120-cell Schlafli-Hess polychoron-wireframe-1.png Ortho solid 016-uniform polychoron p33-t0.png {5/2,3,3}
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node 1.png
120
{5/2,3}
Great stellated dodecahedron.png
720
{5/2}
Star polygon 5-2.svg
1200
{3}
Regular triangle.svg
600
{3,3}
Tetrahedron.png
1910H4
[5,3,3]
Grand 600-cell

There are 4 failed potential regular star 4-polytopes permutations: {3,5/2,3}, {4,3,5/2}, {5/2,3,4}, {5/2,3,5/2}. Their cells and vertex figures exist, but they do not cover a hypersphere with a finite number of repetitions.

Skew 4-polytopes

In addition to the 16 planar 4-polytopes above there are 18 finite skew polytopes. [12] One of these is obtained as the Petrial of the tesseract, and the other 17 can be formed by applying the kappa operation to the planar polytopes and the Petrial of the tesseract.

Ranks 5 and higher

5-polytopes can be given the symbol where is the 4-face type, is the cell type, is the face type, and is the face figure, is the edge figure, and is the vertex figure.

A vertex figure (of a 5-polytope) is a 4-polytope, seen by the arrangement of neighboring vertices to each vertex.
An edge figure (of a 5-polytope) is a polyhedron, seen by the arrangement of faces around each edge.
A face figure (of a 5-polytope) is a polygon, seen by the arrangement of cells around each face.

A regular 5-polytope exists only if and are regular 4-polytopes.

The space it fits in is based on the expression:

 : Spherical 4-space tessellation or 5-space polytope
 : Euclidean 4-space tessellation
 : hyperbolic 4-space tessellation

Enumeration of these constraints produce 3 convex polytopes, no star polytopes, 3 tessellations of Euclidean 4-space, and 5 tessellations of paracompact hyperbolic 4-space. The only no non-convex regular polytopes for ranks 5 and higher are skews.

Convex

In dimensions 5 and higher, there are only three kinds of convex regular polytopes. [13]

Name Schläfli
Symbol
{p1,...,pn−1}
Coxeter k-facesFacet
type
Vertex
figure
Dual
n-simplex {3n−1}CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 3.pngCDel node.png {3n−2}{3n−2}Self-dual
n-cube {4,3n−2}CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 3.pngCDel node.png{4,3n−3}{3n−2}n-orthoplex
n-orthoplex {3n−2,4}CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 4.pngCDel node.png{3n−2}{3n−3,4}n-cube

There are also improper cases where some numbers in the Schläfli symbol are 2. For example, {p,q,r,...2} is an improper regular spherical polytope whenever {p,q,r...} is a regular spherical polytope, and {2,...p,q,r} is an improper regular spherical polytope whenever {...p,q,r} is a regular spherical polytope. Such polytopes may also be used as facets, yielding forms such as {p,q,...2...y,z}.

5 dimensions

Name Schläfli
Symbol
{p,q,r,s}
Coxeter
Facets
{p,q,r}
Cells
{p,q}
Faces
{p}
EdgesVerticesFace
figure
{s}
Edge
figure
{r,s}
Vertex
figure

{q,r,s}
5-simplex {3,3,3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6
{3,3,3}
15
{3,3}
20
{3}
156{3}{3,3}{3,3,3}
5-cube {4,3,3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
10
{4,3,3}
40
{4,3}
80
{4}
8032{3}{3,3}{3,3,3}
5-orthoplex {3,3,3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
32
{3,3,3}
80
{3,3}
80
{3}
4010{4}{3,4}{3,3,4}
5-simplex t0.svg
5-simplex
5-cube graph.svg
5-cube
5-orthoplex.svg
5-orthoplex

6 dimensions

Name Schläfli VerticesEdgesFacesCells4-faces5-facesχ
6-simplex {3,3,3,3,3}72135352170
6-cube {4,3,3,3,3}6419224016060120
6-orthoplex {3,3,3,3,4}1260160240192640
6-simplex t0.svg
6-simplex
6-cube graph.svg
6-cube
6-orthoplex.svg
6-orthoplex

7 dimensions

Name Schläfli VerticesEdgesFacesCells4-faces5-faces6-facesχ
7-simplex {3,3,3,3,3,3}8285670562882
7-cube {4,3,3,3,3,3}12844867256028084142
7-orthoplex {3,3,3,3,3,4}14842805606724481282
7-simplex t0.svg
7-simplex
7-cube graph.svg
7-cube
7-orthoplex.svg
7-orthoplex

8 dimensions

Name Schläfli VerticesEdgesFacesCells4-faces5-faces6-faces7-facesχ
8-simplex {3,3,3,3,3,3,3}93684126126843690
8-cube {4,3,3,3,3,3,3}2561024179217921120448112160
8-orthoplex {3,3,3,3,3,3,4}1611244811201792179210242560
8-simplex t0.svg
8-simplex
8-cube.svg
8-cube
8-orthoplex.svg
8-orthoplex

9 dimensions

Name Schläfli VerticesEdgesFacesCells4-faces5-faces6-faces7-faces8-facesχ
9-simplex {38}104512021025221012045102
9-cube {4,37}51223044608537640322016672144182
9-orthoplex {37,4}18144672201640325376460823045122
9-simplex t0.svg
9-simplex
9-cube.svg
9-cube
9-orthoplex.svg
9-orthoplex

10 dimensions

Name Schläfli VerticesEdgesFacesCells4-faces5-faces6-faces7-faces8-faces9-facesχ
10-simplex {39}115516533046246233016555110
10-cube {4,38}1024512011520153601344080643360960180200
10-orthoplex {38,4}2018096033608064134401536011520512010240
10-simplex t0.svg
10-simplex
10-cube.svg
10-cube
10-orthoplex.svg
10-orthoplex

Star polytopes

There are no regular star polytopes of rank 5 or higher, with the exception of degenerate polytopes created by the star product of lower rank star polytopes. e.g. hosotopes and ditopes.

Regular projective polytopes

A projective regular (n+1)-polytope exists when an original regular n-spherical tessellation, {p,q,...}, is centrally symmetric. Such a polytope is named hemi-{p,q,...}, and contain half as many elements. Coxeter gives a symbol {p,q,...}/2, while McMullen writes {p,q,...}h/2 with h as the coxeter number. [14]

Even-sided regular polygons have hemi-2n-gon projective polygons, {2p}/2.

There are 4 regular projective polyhedra related to 4 of 5 Platonic solids.

The hemi-cube and hemi-octahedron generalize as hemi-n-cubes and hemi-n-orthoplexes to any rank.

Regular projective polyhedra

rank 3 regular hemi-polytopes
NameCoxeter
McMullen
ImageFacesEdgesVertices χ
Hemi-cube {4,3}/2
{4,3}3
Hemicube.svg 3641
Hemi-octahedron {3,4}/2
{3,4}3
Hemi-octahedron2.png 4631
Hemi-dodecahedron {5,3}/2
{5,3}5
Hemi-dodecahedron.png 615101
Hemi-icosahedron {3,5}/2
{3,5}5
Hemi-icosahedron2.png 101561

Regular projective 4-polytopes

5 of 6 convex regular 4-polytopes are centrally symmetric generating projective 4-polytopes. The 3 special cases are hemi-24-cell, hemi-600-cell, and hemi-120-cell.

Rank 4 regular hemi-polytopes
NameCoxeter
symbol
McMullen
Symbol
CellsFacesEdgesVertices χ
Hemi-tesseract {4,3,3}/2{4,3,3}44121680
Hemi-16-cell {3,3,4}/2{3,3,4}48161240
Hemi-24-cell {3,4,3}/2{3,4,3}6124848120
Hemi-120-cell {5,3,3}/2{5,3,3}15603606003000
Hemi-600-cell {3,3,5}/2{3,3,5}15300600360600

Regular projective 5-polytopes

Only 2 of 3 regular spereical polytopes are centrally symmetric for ranks 5 or higher: they are the hemi versions of the regular hypercube and orthoplex. They are tabulated below for rank 5, for example:

Name Schläfli 4-facesCellsFacesEdgesVertices χ
hemi-penteract {4,3,3,3}/25204040161
hemi-pentacross {3,3,3,4}/21640402051

Apeirotopes

An apeirotope or infinite polytope is a polytope which has infinitely many facets. An n-apeirotope is an infinite n-polytope: a 2-apeirotope or apeirogon is an infinite polygon, a 3-apeirotope or apeirohedron is an infinite polyhedron, etc.

There are two main geometric classes of apeirotope: [15]

2-apeirotopes (apeirogons)

The straight apeirogon is a regular tessellation of the line, subdividing it into infinitely many equal segments. It has infinitely many vertices and edges. Its Schläfli symbol is {∞}, and Coxeter diagram CDel node 1.pngCDel infin.pngCDel node.png.

... Regular apeirogon.svg ...

It exists as the limit of the p-gon as p tends to infinity, as follows:

Name Monogon Digon Triangle Square Pentagon Hexagon Heptagon p-gon Apeirogon
Schläfli {1}{2}{3}{4}{5}{6}{7}{p}{∞}
SymmetryD1, [ ]D2, [2]D3, [3]D4, [4]D5, [5]D6, [6]D7, [7][p]
Coxeter CDel node.png or CDel node h.pngCDel 2x.pngCDel node.pngCDel node 1.pngCDel 2x.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node 1.pngCDel 7.pngCDel node.pngCDel node 1.pngCDel p.pngCDel node.pngCDel node 1.pngCDel infin.pngCDel node.png
Image Monogon.svg Digon.svg Regular triangle.svg Regular quadrilateral.svg Regular pentagon.svg Regular hexagon.svg Regular heptagon.svg Regular apeirogon.svg

Apeirogons in the hyperbolic plane, most notably the regular apeirogon, {∞}, can have a curvature just like finite polygons of the Euclidean plane, with the vertices circumscribed by horocycles or hypercycles rather than circles.

Regular apeirogons that are scaled to converge at infinity have the symbol {∞} and exist on horocycles, while more generally they can exist on hypercycles.

{∞}{πi/λ}
Hyperbolic apeirogon example.png
Apeirogon on horocycle
Pseudogon example.png
Apeirogon on hypercycle

Above are two regular hyperbolic apeirogons in the Poincaré disk model, the right one shows perpendicular reflection lines of divergent fundamental domains, separated by length λ.

Skew apeirogons

A skew apeirogon in two dimensions forms a zig-zag line in the plane. If the zig-zag is even and symmetrical, then the apeirogon is regular.

Skew apeirogons can be constructed in any number of dimensions. In three dimensions, a regular skew apeirogon traces out a helical spiral and may be either left- or right-handed.

2 dimensions3 dimensions
Regular zig-zag.svg
Zig-zag apeirogon
Triangular helix.png
Helix apeirogon

2-apeirotopes (apeirohedra)

Euclidean tilings

There are three regular tessellations of the plane.

Name Square tiling
(quadrille)
Triangular tiling
(deltille)
Hexagonal tiling
(hextille)
Symmetry p4m, [4,4], (*442)p6m, [6,3], (*632)
Schläfli {p,q}{4,4}{3,6}{6,3}
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Image Uniform tiling 44-t0.png Uniform tiling 63-t2.png Uniform tiling 63-t0.png

There are two improper regular tilings: {∞,2}, an apeirogonal dihedron, made from two apeirogons, each filling half the plane; and secondly, its dual, {2,∞}, an apeirogonal hosohedron, seen as an infinite set of parallel lines.

Apeirogonal tiling.png
{∞,2}, CDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.png
Apeirogonal hosohedron.png
{2,∞}, CDel node 1.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png

Euclidean star-tilings

There are no regular plane tilings of star polygons. There are many enumerations that fit in the plane (1/p + 1/q = 1/2), like {8/3,8}, {10/3,5}, {5/2,10}, {12/5,12}, etc., but none repeat periodically.

Hyperbolic tilings

Tessellations of hyperbolic 2-space are hyperbolic tilings . There are infinitely many regular tilings in H2. As stated above, every positive integer pair {p,q} such that 1/p + 1/q < 1/2 gives a hyperbolic tiling. In fact, for the general Schwarz triangle (p, q, r) the same holds true for 1/p + 1/q + 1/r < 1.

There are a number of different ways to display the hyperbolic plane, including the Poincaré disc model which maps the plane into a circle, as shown below. It should be recognized that all of the polygon faces in the tilings below are equal-sized and only appear to get smaller near the edges due to the projection applied, very similar to the effect of a camera fisheye lens.

There are infinitely many flat regular 3-apeirotopes (apeirohedra) as regular tilings of the hyperbolic plane, of the form {p,q}, with p+q<pq/2.

  • {3,7}, {3,8}, {3,9} ... {3,∞}
  • {4,5}, {4,6}, {4,7} ... {4,∞}
  • {5,4}, {5,5}, {5,6} ... {5,∞}
  • {6,4}, {6,5}, {6,6} ... {6,∞}
  • {7,3}, {7,4}, {7,5} ... {7,∞}
  • {8,3}, {8,4}, {8,5} ... {8,∞}
  • {9,3}, {9,4}, {9,5} ... {9,∞}
  • ...
  • {∞,3}, {∞,4}, {∞,5} ... {∞,∞}

A sampling:

Regular hyperbolic tiling table
Spherical (improper/Platonic)/Euclidean/hyperbolic (Poincaré disc: compact/paracompact/noncompact) tessellations with their Schläfli symbol
p \ q2345678......iπ/λ
2 Spherical digonal hosohedron.svg
{2,2}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel 2x.pngCDel node.png
Spherical trigonal hosohedron.svg
{2,3}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel 3.pngCDel node.png
Spherical square hosohedron.svg
{2,4}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel 4.pngCDel node.png
Spherical pentagonal hosohedron.svg
{2,5}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel 5.pngCDel node.png
Spherical hexagonal hosohedron.svg
{2,6}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel 6.pngCDel node.png
Spherical heptagonal hosohedron.svg
{2,7}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel 7.pngCDel node.png
Spherical octagonal hosohedron.svg
{2,8}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel 8.pngCDel node.png
E2 tiling 22i-4.png
{2,}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel infin.pngCDel node.png
H2 tiling 22i-4.png
{2,iπ/λ}
CDel node 1.pngCDel 2x.pngCDel node.pngCDel ultra.pngCDel node.png
3 Trigonal dihedron.png

{3,2}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 2x.pngCDel node.png
Uniform tiling 332-t0-1-.png
(tetrahedron)
{3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 432-t2.png
(octahedron)
{3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 532-t2.png
(icosahedron)
{3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 63-t2.png
(deltille)
{3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 37-t0.png

{3,7}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png
Uniform tiling 38-t0.png

{3,8}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 23i-4.png

{3,}
CDel node 1.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
H2 tiling 2312j-4.png

{3,iπ/λ}
CDel node 1.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png
4 Tetragonal dihedron.png

{4,2}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2x.pngCDel node.png
Uniform tiling 432-t0.png
(cube)
{4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 44-t0.svg
(quadrille)
{4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 45-t0.png

{4,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 46-t0.png

{4,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 47-t0.png

{4,7}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png
Uniform tiling 48-t0.png

{4,8}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 24i-4.png

{4,}
CDel node 1.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node.png
H2 tiling 2412j-4.png
{4,iπ/λ}
CDel node 1.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png
5 Pentagonal dihedron.png

{5,2}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 2x.pngCDel node.png
Uniform tiling 532-t0.png
(dodecahedron)
{5,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
H2-5-4-dual.svg

{5,4}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 55-t0.png

{5,5}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 56-t0.png

{5,6}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 57-t0.png

{5,7}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 7.pngCDel node.png
Uniform tiling 58-t0.png

{5,8}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 25i-4.png

{5,}
CDel node 1.pngCDel 5.pngCDel node.pngCDel infin.pngCDel node.png
H2 tiling 2512j-4.png
{5,iπ/λ}
CDel node 1.pngCDel 5.pngCDel node.pngCDel ultra.pngCDel node.png
6 Hexagonal dihedron.png

{6,2}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 2x.pngCDel node.png
Uniform tiling 63-t0.svg
(hextille)
{6,3}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 64-t0.png

{6,4}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 65-t0.png

{6,5}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 66-t2.png

{6,6}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 67-t0.png

{6,7}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 7.pngCDel node.png
Uniform tiling 68-t0.png

{6,8}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 26i-4.png

{6,}
CDel node 1.pngCDel 6.pngCDel node.pngCDel infin.pngCDel node.png
H2 tiling 2612j-4.png
{6,iπ/λ}
CDel node 1.pngCDel 6.pngCDel node.pngCDel ultra.pngCDel node.png
7 {7,2}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 2x.pngCDel node.png
Heptagonal tiling.svg
{7,3}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 74-t0.png
{7,4}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 75-t0.png
{7,5}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 76-t0.png
{7,6}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 77-t2.png
{7,7}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node.png
Uniform tiling 78-t0.png
{7,8}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 27i-4.png
{7,}
CDel node 1.pngCDel 7.pngCDel node.pngCDel infin.pngCDel node.png
{7,iπ/λ}
CDel node 1.pngCDel 7.pngCDel node.pngCDel ultra.pngCDel node.png
8 {8,2}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 2x.pngCDel node.png
H2-8-3-dual.svg
{8,3}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 84-t0.png
{8,4}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 85-t0.png
{8,5}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 86-t0.png
{8,6}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 87-t0.png
{8,7}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 7.pngCDel node.png
Uniform tiling 88-t2.png
{8,8}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 28i-4.png
{8,}
CDel node 1.pngCDel 8.pngCDel node.pngCDel infin.pngCDel node.png
{8,iπ/λ}
CDel node 1.pngCDel 8.pngCDel node.pngCDel ultra.pngCDel node.png
...
E2 tiling 22i-1.png
{,2}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 2x.pngCDel node.png
H2-I-3-dual.svg
{,3}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png
H2 tiling 24i-1.png
{,4}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png
H2 tiling 25i-1.png
{,5}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 26i-1.png
{,6}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 27i-1.png
{,7}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 7.pngCDel node.png
H2 tiling 28i-1.png
{,8}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 2ii-1.png
{,}
CDel node 1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.png
H2 tiling 2i12j-4.png
{,iπ/λ}
CDel node 1.pngCDel infin.pngCDel node.pngCDel ultra.pngCDel node.png
...
iπ/λ H2 tiling 22i-1.png
{iπ/λ,2}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 2x.pngCDel node.png
H2 tiling 2312j-1.png
{iπ/λ,3}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node.png
H2 tiling 2412j-1.png
{iπ/λ,4}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 4.pngCDel node.png
H2 tiling 2512j-1.png
{iπ/λ,5}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 2612j-1.png
{iπ/λ,6}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 6.pngCDel node.png
{iπ/λ,7}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 7.pngCDel node.png
{iπ/λ,8}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 2i12j-1.png
{iπ/λ,}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel infin.pngCDel node.png
H2 tiling 212j12j-1.png

{iπ/λ, iπ/λ}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel ultra.pngCDel node.png

The tilings {p, ∞} have ideal vertices, on the edge of the Poincaré disc model. Their duals {∞, p} have ideal apeirogonal faces, meaning that they are inscribed in horocycles. One could go further (as is done in the table above) and find tilings with ultra-ideal vertices, outside the Poincaré disc, which are dual to tiles inscribed in hypercycles; in what is symbolised {p, iπ/λ} above, infinitely many tiles still fit around each ultra-ideal vertex. [16] (Parallel lines in extended hyperbolic space meet at an ideal point; ultraparallel lines meet at an ultra-ideal point.) [17]

Hyperbolic star-tilings

There are 2 infinite forms of hyperbolic tilings whose faces or vertex figures are star polygons: {m/2, m} and their duals {m, m/2} with m = 7, 9, 11, .... The {m/2, m} tilings are stellations of the {m, 3} tilings while the {m, m/2} dual tilings are facetings of the {3, m} tilings and greatenings of the {m, 3} tilings.

The patterns {m/2, m} and {m, m/2} continue for odd m< 7 as polyhedra: when m = 5, we obtain the small stellated dodecahedron and great dodecahedron, and when m = 3, the case degenerates to a tetrahedron. The other two Kepler–Poinsot polyhedra (the great stellated dodecahedron and great icosahedron) do not have regular hyperbolic tiling analogues. If m is even, depending on how we choose to define {m/2}, we can either obtain degenerate double covers of other tilings or compound tilings.

Name Schläfli Coxeter diagram ImageFace type
{p}
Vertex figure
{q}
Density Symmetry Dual
Order-7 heptagrammic tiling {7/2,7}CDel node 1.pngCDel 7.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 7.pngCDel node.png Hyperbolic tiling 7-2 7.png {7/2}
Star polygon 7-2.svg
{7}
Regular heptagon.svg
3*732
[7,3]
Heptagrammic-order heptagonal tiling
Heptagrammic-order heptagonal tiling {7,7/2}CDel node 1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel rat.pngCDel d2.pngCDel node.png Hyperbolic tiling 7 7-2.png {7}
Regular heptagon.svg
{7/2}
Star polygon 7-2.svg
3*732
[7,3]
Order-7 heptagrammic tiling
Order-9 enneagrammic tiling {9/2,9}CDel node 1.pngCDel 9.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 9.pngCDel node.png Hyperbolic tiling 9-2 9.png {9/2}
Star polygon 9-2.svg
{9}
Regular nonagon.svg
3*932
[9,3]
Enneagrammic-order enneagonal tiling
Enneagrammic-order enneagonal tiling {9,9/2}CDel node 1.pngCDel 9.pngCDel node.pngCDel 9.pngCDel rat.pngCDel d2.pngCDel node.png Hyperbolic tiling 9 9-2.png {9}
Regular nonagon.svg
{9/2}
Star polygon 9-2.svg
3*932
[9,3]
Order-9 enneagrammic tiling
Order-11 hendecagrammic tiling {11/2,11}CDel node 1.pngCDel 11.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 11.pngCDel node.png Order-11 hendecagrammic tiling.png {11/2}
Star polygon 11-2.svg
{11}
Regular hendecagon.svg
3*11.3.2
[11,3]
Hendecagrammic-order hendecagonal tiling
Hendecagrammic-order hendecagonal tiling {11,11/2}CDel node 1.pngCDel 11.pngCDel node.pngCDel 11.pngCDel rat.pngCDel d2.pngCDel node.png Hendecagrammic-order hendecagonal tiling.png {11}
Regular hendecagon.svg
{11/2}
Star polygon 11-2.svg
3*11.3.2
[11,3]
Order-11 hendecagrammic tiling
Order-pp-grammic tiling{p/2,p}CDel node 1.pngCDel p.pngCDel rat.pngCDel d2.pngCDel node.pngCDel p.pngCDel node.png {p/2}{p}3*p32
[p,3]
p-grammic-order p-gonal tiling
p-grammic-order p-gonal tiling{p,p/2}CDel node 1.pngCDel p.pngCDel node.pngCDel p.pngCDel rat.pngCDel d2.pngCDel node.png {p}{p/2}3*p32
[p,3]
Order-pp-grammic tiling

Skew apeirohedra in Euclidean 3-space

There are three regular skew apeirohedra in Euclidean 3-space, with planar faces. [18] [19] [20] They share the same vertex arrangement and edge arrangement of 3 convex uniform honeycombs.

  • 6 squares around each vertex: {4,6|4}
  • 4 hexagons around each vertex: {6,4|4}
  • 6 hexagons around each vertex: {6,6|3}
12 "pure" apeirohedra in Euclidean 3-space based on the structure of the cubic honeycomb, {4,3,4}. A p petrie dual operator replaces faces with petrie polygons; d is a dual operator reverses vertices and faces; phk is a kth facetting operator; e is a halving operator, and s skewing halving operator. Pure 3-dimensional apeirohedra chart.png
12 "pure" apeirohedra in Euclidean 3-space based on the structure of the cubic honeycomb, {4,3,4}. A π petrie dual operator replaces faces with petrie polygons; δ is a dual operator reverses vertices and faces; φk is a kth facetting operator; η is a halving operator, and σ skewing halving operator.
Regular skew polyhedra with planar faces
Mucube external.png
{4,6|4}
Muoctahedron external.png
{6,4|4}
Mutetrahedron external.png
{6,6|3}

Allowing for skew faces, there are 24 regular apeirohedra in Euclidean 3-space. [22] These include 12 apeirhedra created by blends with the Euclidean apeirohedra, and 12 pure apeirohedra, including the 3 above, which cannot be expressed as a non-trivial blend.

Those pure apeirohedra are:

  • {4,6|4}, the mucube
  • {,6}4,4, the Petrial of the mucube
  • {6,6|3}, the mutetrahedron
  • {,6}6,3, the Petrial of the mutetrahedron
  • {6,4|4}, the muoctahedron
  • {,4}6,4, the Petrial of the muoctahedron
  • {6,6}4, the halving of the mucube
  • {4,6}6, the Petrial of {6,6}4
  • {,4}·,*3, the skewing of the muoctahedron
  • {6,4}6, the Petrial of {,4}·,*3
  • {∞,3}(a)
  • {∞,3}(b)

Skew apeirohedra in hyperbolic 3-space

There are 31 regular skew apeirohedra with convex faces in hyperbolic 3-space with compact or paracompact symmetry: [23]

  • 14 are compact: {8,10|3}, {10,8|3}, {10,4|3}, {4,10|3}, {6,4|5}, {4,6|5}, {10,6|3}, {6,10|3}, {8,8|3}, {6,6|4}, {10,10|3},{6,6|5}, {8,6|3}, and {6,8|3}.
  • 17 are paracompact: {12,10|3}, {10,12|3}, {12,4|3}, {4,12|3}, {6,4|6}, {4,6|6}, {8,4|4}, {4,8|4}, {12,6|3}, {6,12|3}, {12,12|3}, {6,6|6}, {8,6|4}, {6,8|4}, {12,8|3}, {8,12|3}, and {8,8|4}.

4-apeirotopes

Tessellations of Euclidean 3-space

Edge framework of cubic honeycomb, {4,3,4} Cubic honeycomb.png
Edge framework of cubic honeycomb, {4,3,4}

There is only one non-degenerate regular tessellation of 3-space ( honeycombs ), {4, 3, 4}: [24]

Name Schläfli
{p,q,r}
Coxeter
CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.png
Cell
type
{p,q}
Face
type
{p}
Edge
figure
{r}
Vertex
figure

{q,r}
χ Dual
Cubic honeycomb {4,3,4}CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png{4,3}{4}{4}{3,4}0Self-dual

Improper tessellations of Euclidean 3-space

Regular {2,4,4} honeycomb, seen projected into a sphere. Order-4 square hosohedral honeycomb-sphere.png
Regular {2,4,4} honeycomb, seen projected into a sphere.

There are six improper regular tessellations, pairs based on the three regular Euclidean tilings. Their cells and vertex figures are all regular hosohedra {2,n}, dihedra, {n,2}, and Euclidean tilings. These improper regular tilings are constructionally related to prismatic uniform honeycombs by truncation operations. They are higher-dimensional analogues of the order-2 apeirogonal tiling and apeirogonal hosohedron.

Schläfli
{p,q,r}
Coxeter
diagram
Cell
type
{p,q}
Face
type
{p}
Edge
figure
{r}
Vertex
figure

{q,r}
{2,4,4} CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png{2,4}{2}{4}{4,4}
{2,3,6} CDel node 1.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png{2,3}{2}{6}{3,6}
{2,6,3} CDel node 1.pngCDel 2.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png{2,6}{2}{3}{6,3}
{4,4,2} CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.png{4,4}{4}{2}{4,2}
{3,6,2} CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.png{3,6}{3}{2}{6,2}
{6,3,2} CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png{6,3}{6}{2}{3,2}

Tessellations of hyperbolic 3-space

There are ten flat regular honeycombs of hyperbolic 3-space: [25]

  • 4 are compact: {3,5,3}, {4,3,5}, {5,3,4}, and {5,3,5}
  • while 6 are paracompact: {3,3,6}, {6,3,3}, {3,4,4}, {4,4,3}, {3,6,3}, {4,3,6}, {6,3,4}, {4,4,4}, {5,3,6}, {6,3,5}, and {6,3,6}.
4 compact regular honeycombs
H3 534 CC center.png
{5,3,4}
H3 535 CC center.png
{5,3,5}
H3 435 CC center.png
{4,3,5}
H3 353 CC center.png
{3,5,3}
4 of 11 paracompact regular honeycombs
H3 344 CC center.png
{3,4,4}
H3 363 FC boundary.png
{3,6,3}
H3 443 FC boundary.png
{4,4,3}
H3 444 FC boundary.png
{4,4,4}

Tessellations of hyperbolic 3-space can be called hyperbolic honeycombs . There are 15 hyperbolic honeycombs in H3, 4 compact and 11 paracompact.

4 compact regular honeycombs
Name Schläfli
Symbol
{p,q,r}
Coxeter
CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.png
Cell
type
{p,q}
Face
type
{p}
Edge
figure
{r}
Vertex
figure

{q,r}
χ Dual
Icosahedral honeycomb {3,5,3}CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png {3,5} {3}{3} {5,3} 0Self-dual
Order-5 cubic honeycomb {4,3,5}CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png {4,3} {4}{5} {3,5} 0{5,3,4}
Order-4 dodecahedral honeycomb {5,3,4}CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png {5,3} {5}{4} {3,4} 0{4,3,5}
Order-5 dodecahedral honeycomb {5,3,5}CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png {5,3} {5}{5} {3,5} 0Self-dual

There are also 11 paracompact H3 honeycombs (those with infinite (Euclidean) cells and/or vertex figures): {3,3,6}, {6,3,3}, {3,4,4}, {4,4,3}, {3,6,3}, {4,3,6}, {6,3,4}, {4,4,4}, {5,3,6}, {6,3,5}, and {6,3,6}.

11 paracompact regular honeycombs
Name Schläfli
Symbol
{p,q,r}
Coxeter
CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.png
Cell
type
{p,q}
Face
type
{p}
Edge
figure
{r}
Vertex
figure

{q,r}
χ Dual
Order-6 tetrahedral honeycomb {3,3,6}CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png {3,3} {3}{6} {3,6} 0{6,3,3}
Hexagonal tiling honeycomb {6,3,3}CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png {6,3} {6}{3} {3,3} 0{3,3,6}
Order-4 octahedral honeycomb {3,4,4}CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png {3,4} {3}{4} {4,4} 0{4,4,3}
Square tiling honeycomb {4,4,3}CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png {4,4} {4}{3} {4,3} 0{3,3,4}
Triangular tiling honeycomb {3,6,3}CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png {3,6} {3}{3} {6,3} 0Self-dual
Order-6 cubic honeycomb {4,3,6}CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png {4,3} {4}{4} {3,6} 0{6,3,4}
Order-4 hexagonal tiling honeycomb {6,3,4}CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png {6,3} {6}{4} {3,4} 0{4,3,6}
Order-4 square tiling honeycomb {4,4,4}CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png {4,4} {4}{4} {4,4} 0Self-dual
Order-6 dodecahedral honeycomb {5,3,6}CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png {5,3} {5}{5} {3,6} 0{6,3,5}
Order-5 hexagonal tiling honeycomb {6,3,5}CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png {6,3} {6}{5} {3,5} 0{5,3,6}
Order-6 hexagonal tiling honeycomb {6,3,6}CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png {6,3} {6}{6} {3,6} 0Self-dual

Noncompact solutions exist as Lorentzian Coxeter groups, and can be visualized with open domains in hyperbolic space (the fundamental tetrahedron having ultra-ideal vertices). All honeycombs with hyperbolic cells or vertex figures and do not have 2 in their Schläfli symbol are noncompact.

Spherical (improper/Platonic)/Euclidean/hyperbolic(compact/paracompact/noncompact) honeycombs {p,3,r}
{p,3} \ r2345678...
{2,3}
Spherical trigonal hosohedron.svg
Spherical trigonal hosohedron.svg
{2,3,2}
{2,3,3} {2,3,4} {2,3,5} {2,3,6} {2,3,7} {2,3,8} {2,3,}
{3,3}
Uniform polyhedron-33-t0.png
Tetrahedron.png
{3,3,2}
Schlegel wireframe 5-cell.png
{3,3,3}
Schlegel wireframe 16-cell.png
{3,3,4}
Schlegel wireframe 600-cell vertex-centered.png
{3,3,5}
H3 336 CC center.png
{3,3,6}
Hyperbolic honeycomb 3-3-7 poincare cc.png
{3,3,7}
Hyperbolic honeycomb 3-3-8 poincare cc.png
{3,3,8}
Hyperbolic honeycomb 3-3-i poincare cc.png
{3,3,}
{4,3}
Uniform polyhedron-43-t0.svg
Hexahedron.png
{4,3,2}
Schlegel wireframe 8-cell.png
{4,3,3}
Cubic honeycomb.png
{4,3,4}
H3 435 CC center.png
{4,3,5}
H3 436 CC center.png
{4,3,6}
Hyperbolic honeycomb 4-3-7 poincare cc.png
{4,3,7}
Hyperbolic honeycomb 4-3-8 poincare cc.png
{4,3,8}
Hyperbolic honeycomb 4-3-i poincare cc.png
{4,3,}
{5,3}
Uniform polyhedron-53-t0.svg
Dodecahedron.png
{5,3,2}
Schlegel wireframe 120-cell.png
{5,3,3}
H3 534 CC center.png
{5,3,4}
H3 535 CC center.png
{5,3,5}
H3 536 CC center.png
{5,3,6}
Hyperbolic honeycomb 5-3-7 poincare cc.png
{5,3,7}
Hyperbolic honeycomb 5-3-8 poincare cc.png
{5,3,8}
Hyperbolic honeycomb 5-3-i poincare cc.png
{5,3,}
{6,3}
Uniform tiling 63-t0.svg
Uniform tiling 63-t0.png
{6,3,2}
H3 633 FC boundary.png
{6,3,3}
H3 634 FC boundary.png
{6,3,4}
H3 635 FC boundary.png
{6,3,5}
H3 636 FC boundary.png
{6,3,6}
Hyperbolic honeycomb 6-3-7 poincare.png
{6,3,7}
Hyperbolic honeycomb 6-3-8 poincare.png
{6,3,8}
Hyperbolic honeycomb 6-3-i poincare.png
{6,3,}
{7,3}
Heptagonal tiling.svg
{7,3,2} Hyperbolic honeycomb 7-3-3 poincare vc.png
{7,3,3}
Hyperbolic honeycomb 7-3-4 poincare vc.png
{7,3,4}
Hyperbolic honeycomb 7-3-5 poincare vc.png
{7,3,5}
Hyperbolic honeycomb 7-3-6 poincare.png
{7,3,6}
Hyperbolic honeycomb 7-3-7 poincare.png
{7,3,7}
Hyperbolic honeycomb 7-3-8 poincare.png
{7,3,8}
Hyperbolic honeycomb 7-3-i poincare.png
{7,3,}
{8,3}
H2-8-3-dual.svg
{8,3,2} Hyperbolic honeycomb 8-3-3 poincare vc.png
{8,3,3}
Hyperbolic honeycomb 8-3-4 poincare vc.png
{8,3,4}
Hyperbolic honeycomb 8-3-5 poincare vc.png
{8,3,5}
Hyperbolic honeycomb 8-3-6 poincare.png
{8,3,6}
Hyperbolic honeycomb 8-3-7 poincare.png
{8,3,7}
Hyperbolic honeycomb 8-3-8 poincare.png
{8,3,8}
Hyperbolic honeycomb 8-3-i poincare.png
{8,3,}
... {,3}
H2-I-3-dual.svg
{,3,2} Hyperbolic honeycomb i-3-3 poincare vc.png
{,3,3}
Hyperbolic honeycomb i-3-4 poincare vc.png
{,3,4}
Hyperbolic honeycomb i-3-5 poincare vc.png
{,3,5}
Hyperbolic honeycomb i-3-6 poincare.png
{,3,6}
Hyperbolic honeycomb i-3-7 poincare.png
{,3,7}
Hyperbolic honeycomb i-3-8 poincare.png
{,3,8}
Hyperbolic honeycomb i-3-i poincare.png
{,3,}
{p,4,r}
{p,4} \ r23456
{2,4}
Spherical square hosohedron.svg
Spherical square hosohedron.svg
{2,4,2}
{2,4,3} Order-4 square hosohedral honeycomb-sphere.png
{2,4,4}
{2,4,5} {2,4,6} {2,4,}
{3,4}
Uniform polyhedron-43-t2.svg
Octahedron.png
{3,4,2}
Schlegel wireframe 24-cell.png
{3,4,3}
H3 344 CC center.png
{3,4,4}
Hyperbolic honeycomb 3-4-5 poincare cc.png
{3,4,5}
Hyperbolic honeycomb 3-4-6 poincare cc.png
{3,4,6}
Hyperbolic honeycomb 3-4-i poincare cc.png
{3,4,}
{4,4}
Uniform tiling 44-t0.svg
Uniform tiling 44-t0.png
{4,4,2}
H3 443 FC boundary.png
{4,4,3}
H3 444 FC boundary.png
{4,4,4}
Hyperbolic honeycomb 4-4-5 poincare.png
{4,4,5}
Hyperbolic honeycomb 4-4-6 poincare.png
{4,4,6}
Hyperbolic honeycomb 4-4-i poincare.png
{4,4,}
{5,4}
H2-5-4-dual.svg
{5,4,2} Hyperbolic honeycomb 5-4-3 poincare vc.png
{5,4,3}
Hyperbolic honeycomb 5-4-4 poincare.png
{5,4,4}
Hyperbolic honeycomb 5-4-5 poincare.png
{5,4,5}
Hyperbolic honeycomb 5-4-6 poincare.png
{5,4,6}
Hyperbolic honeycomb 5-4-i poincare.png
{5,4,}
{6,4}
Uniform tiling 55-t0.png
{6,4,2} Hyperbolic honeycomb 6-4-3 poincare vc.png
{6,4,3}
Hyperbolic honeycomb 6-4-4 poincare.png
{6,4,4}
Hyperbolic honeycomb 6-4-5 poincare.png
{6,4,5}
Hyperbolic honeycomb 6-4-6 poincare.png
{6,4,6}
Hyperbolic honeycomb 6-4-i poincare.png
{6,4,}
{,4}
H2 tiling 24i-1.png
{,4,2} Hyperbolic honeycomb i-4-3 poincare vc.png
{,4,3}
Hyperbolic honeycomb i-4-4 poincare.png
{,4,4}
Hyperbolic honeycomb i-4-5 poincare.png
{,4,5}
Hyperbolic honeycomb i-4-6 poincare.png
{,4,6}
Hyperbolic honeycomb i-4-i poincare.png
{,4,}
{p,5,r}
{p,5} \ r23456
{2,5}
Spherical pentagonal hosohedron.svg
Spherical pentagonal hosohedron.svg
{2,5,2}
{2,5,3} {2,5,4} {2,5,5} {2,5,6} {2,5,}
{3,5}
Uniform polyhedron-53-t2.svg
Icosahedron.png
{3,5,2}
H3 353 CC center.png
{3,5,3}
Hyperbolic honeycomb 3-5-4 poincare cc.png
{3,5,4}
Hyperbolic honeycomb 3-5-5 poincare cc.png
{3,5,5}
Hyperbolic honeycomb 3-5-6 poincare cc.png
{3,5,6}
Hyperbolic honeycomb 3-5-i poincare cc.png
{3,5,}
{4,5}
Uniform tiling 45-t0.png
{4,5,2} Hyperbolic honeycomb 4-5-3 poincare vc.png
{4,5,3}
Hyperbolic honeycomb 4-5-4 poincare.png
{4,5,4}
Hyperbolic honeycomb 4-5-5 poincare.png
{4,5,5}
Hyperbolic honeycomb 4-5-6 poincare.png
{4,5,6}
Hyperbolic honeycomb 4-5-i poincare.png
{4,5,}
{5,5}
Uniform tiling 55-t0.png
{5,5,2} Hyperbolic honeycomb 5-5-3 poincare vc.png
{5,5,3}
Hyperbolic honeycomb 5-5-4 poincare.png
{5,5,4}
Hyperbolic honeycomb 5-5-5 poincare.png
{5,5,5}
Hyperbolic honeycomb 5-5-6 poincare.png
{5,5,6}
Hyperbolic honeycomb 5-5-i poincare.png
{5,5,}
{6,5}
Uniform tiling 65-t0.png
{6,5,2} Hyperbolic honeycomb 6-5-3 poincare vc.png
{6,5,3}
Hyperbolic honeycomb 6-5-4 poincare.png
{6,5,4}
Hyperbolic honeycomb 6-5-5 poincare.png
{6,5,5}
Hyperbolic honeycomb 6-5-6 poincare.png
{6,5,6}
Hyperbolic honeycomb 6-5-i poincare.png
{6,5,}
{,5}
H2 tiling 25i-1.png
{,5,2} Hyperbolic honeycomb i-5-3 poincare vc.png
{,5,3}
Hyperbolic honeycomb i-5-4 poincare.png
{,5,4}
Hyperbolic honeycomb i-5-5 poincare.png
{,5,5}
Hyperbolic honeycomb i-5-6 poincare.png
{,5,6}
Hyperbolic honeycomb i-5-i poincare.png
{,5,}
{p,6,r}
{p,6} \ r23456
{2,6}
Spherical hexagonal hosohedron.svg
Spherical hexagonal hosohedron.svg
{2,6,2}
{2,6,3} {2,6,4} {2,6,5} {2,6,6} {2,6,}
{3,6}
Uniform tiling 63-t2.png
Uniform tiling 63-t2.png
{3,6,2}
H3 363 FC boundary.png
{3,6,3}
Hyperbolic honeycomb 3-6-4 poincare.png
{3,6,4}
Hyperbolic honeycomb 3-6-5 poincare.png
{3,6,5}
Hyperbolic honeycomb 3-6-6 poincare.png
{3,6,6}
Hyperbolic honeycomb 3-6-i poincare.png
{3,6,}
{4,6}
Uniform tiling 46-t0.png
{4,6,2} Hyperbolic honeycomb 4-6-3 poincare.png
{4,6,3}
Hyperbolic honeycomb 4-6-4 poincare.png
{4,6,4}
Hyperbolic honeycomb 4-6-5 poincare.png
{4,6,5}
Hyperbolic honeycomb 4-6-6 poincare.png
{4,6,6}
Hyperbolic honeycomb 4-6-i poincare.png
{4,6,}
{5,6}
Uniform tiling 56-t0.png
{5,6,2} Hyperbolic honeycomb 5-6-3 poincare.png
{5,6,3}
Hyperbolic honeycomb 5-6-4 poincare.png
{5,6,4}
Hyperbolic honeycomb 5-6-5 poincare.png
{5,6,5}
Hyperbolic honeycomb 5-6-6 poincare.png
{5,6,6}
Hyperbolic honeycomb 5-6-i poincare.png
{5,6,}
{6,6}
Uniform tiling 66-t0.png
{6,6,2} Hyperbolic honeycomb 6-6-3 poincare.png
{6,6,3}
Hyperbolic honeycomb 6-6-4 poincare.png
{6,6,4}
Hyperbolic honeycomb 6-6-5 poincare.png
{6,6,5}
Hyperbolic honeycomb 6-6-6 poincare.png
{6,6,6}
Hyperbolic honeycomb 6-6-i poincare.png
{6,6,}
{,6}
H2 tiling 26i-1.png
{,6,2} Hyperbolic honeycomb i-6-3 poincare.png
{,6,3}
Hyperbolic honeycomb i-6-4 poincare.png
{,6,4}
Hyperbolic honeycomb i-6-5 poincare.png
{,6,5}
Hyperbolic honeycomb i-6-6 poincare.png
{,6,6}
Hyperbolic honeycomb i-6-i poincare.png
{,6,}
{p,7,r}
{p,7} \ r23456
{2,7}
Spherical heptagonal hosohedron.svg
Spherical heptagonal hosohedron.svg
{2,7,2}
{2,7,3} {2,7,4} {2,7,5} {2,7,6} {2,7,}
{3,7}
Uniform tiling 37-t0.png
{3,7,2} Hyperbolic honeycomb 3-7-3 poincare.png
{3,7,3}
Hyperbolic honeycomb 3-7-4 poincare.png
{3,7,4}
Hyperbolic honeycomb 3-7-5 poincare.png
{3,7,5}
Hyperbolic honeycomb 3-7-6 poincare.png
{3,7,6}
Hyperbolic honeycomb 3-7-i poincare.png
{3,7,}
{4,7}
Uniform tiling 47-t0.png
{4,7,2} Hyperbolic honeycomb 4-7-3 poincare.png
{4,7,3}
Hyperbolic honeycomb 4-7-4 poincare.png
{4,7,4}
Hyperbolic honeycomb 4-7-5 poincare.png
{4,7,5}
Hyperbolic honeycomb 4-7-6 poincare.png
{4,7,6}
Hyperbolic honeycomb 4-7-i poincare.png
{4,7,}
{5,7}
Uniform tiling 57-t0.png
{5,7,2} Hyperbolic honeycomb 5-7-3 poincare.png
{5,7,3}
Hyperbolic honeycomb 5-7-4 poincare.png
{5,7,4}
Hyperbolic honeycomb 5-7-5 poincare.png
{5,7,5}
Hyperbolic honeycomb 5-7-6 poincare.png
{5,7,6}
Hyperbolic honeycomb 5-7-i poincare.png
{5,7,}
{6,7}
Uniform tiling 67-t0.png
{6,7,2} Hyperbolic honeycomb 6-7-3 poincare.png
{6,7,3}
Hyperbolic honeycomb 6-7-4 poincare.png
{6,7,4}
Hyperbolic honeycomb 6-7-5 poincare.png
{6,7,5}
Hyperbolic honeycomb 6-7-6 poincare.png
{6,7,6}
Hyperbolic honeycomb 6-7-i poincare.png
{6,7,}
{,7}
H2 tiling 27i-1.png
{,7,2} Hyperbolic honeycomb i-7-3 poincare.png
{,7,3}
Hyperbolic honeycomb i-7-4 poincare.png
{,7,4}
Hyperbolic honeycomb i-7-5 poincare.png
{,7,5}
Hyperbolic honeycomb i-7-6 poincare.png
{,7,6}
Hyperbolic honeycomb i-7-i poincare.png
{,7,}
{p,8,r}
{p,8} \ r23456
{2,8}
Spherical octagonal hosohedron.svg
Spherical octagonal hosohedron.svg
{2,8,2}
{2,8,3} {2,8,4} {2,8,5} {2,8,6} {2,8,}
{3,8}
Uniform tiling 38-t0.png
{3,8,2} Hyperbolic honeycomb 3-8-3 poincare.png
{3,8,3}
Hyperbolic honeycomb 3-8-4 poincare.png
{3,8,4}
Hyperbolic honeycomb 3-8-5 poincare.png
{3,8,5}
Hyperbolic honeycomb 3-8-6 poincare.png
{3,8,6}
Hyperbolic honeycomb 3-8-i poincare.png
{3,8,}
{4,8}
Uniform tiling 48-t0.png
{4,8,2} Hyperbolic honeycomb 4-8-3 poincare.png
{4,8,3}
Hyperbolic honeycomb 4-8-4 poincare.png
{4,8,4}
Hyperbolic honeycomb 4-8-5 poincare.png
{4,8,5}
Hyperbolic honeycomb 4-8-6 poincare.png
{4,8,6}
Hyperbolic honeycomb 4-8-i poincare.png
{4,8,}
{5,8}
Uniform tiling 58-t0.png
{5,8,2} Hyperbolic honeycomb 5-8-3 poincare.png
{5,8,3}
Hyperbolic honeycomb 5-8-4 poincare.png
{5,8,4}
Hyperbolic honeycomb 5-8-5 poincare.png
{5,8,5}
Hyperbolic honeycomb 5-8-6 poincare.png
{5,8,6}
Hyperbolic honeycomb 5-8-i poincare.png
{5,8,}
{6,8}
Uniform tiling 68-t0.png
{6,8,2} Hyperbolic honeycomb 6-8-3 poincare.png
{6,8,3}
Hyperbolic honeycomb 6-8-4 poincare.png
{6,8,4}
Hyperbolic honeycomb 6-8-5 poincare.png
{6,8,5}
Hyperbolic honeycomb 6-8-6 poincare.png
{6,8,6}
Hyperbolic honeycomb 6-8-i poincare.png
{6,8,}
{,8}
H2 tiling 28i-1.png
{,8,2} Hyperbolic honeycomb i-8-3 poincare.png
{,8,3}
Hyperbolic honeycomb i-8-4 poincare.png
{,8,4}
Hyperbolic honeycomb i-8-5 poincare.png
{,8,5}
Hyperbolic honeycomb i-8-6 poincare.png
{,8,6}
Hyperbolic honeycomb i-8-i poincare.png
{,8,}
{p,,r}
{p,} \ r23456
{2,}
Apeirogonal hosohedron.png
Apeirogonal hosohedron.png
{2,,2}
{2,,3} {2,,4} {2,,5} {2,,6} {2,,}
{3,}
H2 tiling 23i-4.png
{3,,2} Hyperbolic honeycomb 3-i-3 poincare.png
{3,,3}
Hyperbolic honeycomb 3-i-4 poincare.png
{3,,4}
Hyperbolic honeycomb 3-i-5 poincare.png
{3,,5}
Hyperbolic honeycomb 3-i-6 poincare.png
{3,,6}
Hyperbolic honeycomb 3-i-i poincare.png
{3,,}
{4,}
H2 tiling 24i-4.png
{4,,2} Hyperbolic honeycomb 4-i-3 poincare.png
{4,,3}
Hyperbolic honeycomb 4-i-4 poincare.png
{4,,4}
Hyperbolic honeycomb 4-i-5 poincare.png
{4,,5}
Hyperbolic honeycomb 4-i-6 poincare.png
{4,,6}
Hyperbolic honeycomb 4-i-i poincare.png
{4,,}
{5,}
H2 tiling 25i-4.png
{5,,2} Hyperbolic honeycomb 5-i-3 poincare.png
{5,,3}
Hyperbolic honeycomb 5-i-4 poincare.png
{5,,4}
Hyperbolic honeycomb 5-i-5 poincare.png
{5,,5}
Hyperbolic honeycomb 5-i-6 poincare.png
{5,,6}
Hyperbolic honeycomb 5-i-i poincare.png
{5,,}
{6,}
H2 tiling 26i-4.png
{6,,2} Hyperbolic honeycomb 6-i-3 poincare.png
{6,,3}
Hyperbolic honeycomb 6-i-4 poincare.png
{6,,4}
Hyperbolic honeycomb 6-i-5 poincare.png
{6,,5}
Hyperbolic honeycomb 6-i-6 poincare.png
{6,,6}
Hyperbolic honeycomb 6-i-i poincare.png
{6,,}
{,}
H2 tiling 2ii-4.png
{,,2} Hyperbolic honeycomb i-i-3 poincare.png
{,,3}
Hyperbolic honeycomb i-i-4 poincare.png
{,,4}
Hyperbolic honeycomb i-i-5 poincare.png
{,,5}
Hyperbolic honeycomb i-i-6 poincare.png
{,,6}
Hyperbolic honeycomb i-i-i poincare.png
{,,}

There are no regular hyperbolic star-honeycombs in H3: all forms with a regular star polyhedron as cell, vertex figure or both end up being spherical.

Ideal vertices now appear when the vertex figure is a Euclidean tiling, becoming inscribable in a horosphere rather than a sphere. They are dual to ideal cells (Euclidean tilings rather than finite polyhedra). As the last number in the Schläfli symbol rises further, the vertex figure becomes hyperbolic, and vertices become ultra-ideal (so the edges do not meet within hyperbolic space). In honeycombs {p, q, ∞} the edges intersect the Poincaré ball only in one ideal point; the rest of the edge has become ultra-ideal. Continuing further would lead to edges that are completely ultra-ideal, both for the honeycomb and for the fundamental simplex (though still infinitely many {p, q} would meet at such edges). In general, when the last number of the Schläfli symbol becomes ∞, faces of codimension two intersect the Poincaré hyperball only in one ideal point. [16]

5-apeirotopes

Tessellations of Euclidean 4-space

There are three kinds of infinite regular tessellations (honeycombs) that can tessellate Euclidean four-dimensional space:

3 regular Euclidean honeycombs
Name Schläfli
Symbol
{p,q,r,s}
Facet
type
{p,q,r}
Cell
type
{p,q}
Face
type
{p}
Face
figure
{s}
Edge
figure
{r,s}
Vertex
figure

{q,r,s}
Dual
Tesseractic honeycomb {4,3,3,4}{4,3,3}{4,3}{4}{4}{3,4}{3,3,4}Self-dual
16-cell honeycomb {3,3,4,3}{3,3,4}{3,3}{3}{3}{4,3}{3,4,3}{3,4,3,3}
24-cell honeycomb {3,4,3,3}{3,4,3}{3,4}{3}{3}{3,3}{4,3,3}{3,3,4,3}
Tesseractic tetracomb.png
Projected portion of {4,3,3,4}
(Tesseractic honeycomb)
Demitesseractic tetra hc.png
Projected portion of {3,3,4,3}
(16-cell honeycomb)
Icositetrachoronic tetracomb.png
Projected portion of {3,4,3,3}
(24-cell honeycomb)

There are also the two improper cases {4,3,4,2} and {2,4,3,4}.

There are three flat regular honeycombs of Euclidean 4-space: [24]

  • {4,3,3,4}, {3,3,4,3}, and {3,4,3,3}.

There are seven flat regular convex honeycombs of hyperbolic 4-space: [25]

  • 5 are compact: {3,3,3,5}, {5,3,3,3}, {4,3,3,5}, {5,3,3,4}, {5,3,3,5}
  • 2 are paracompact: {3,4,3,4}, and {4,3,4,3}.

There are four flat regular star honeycombs of hyperbolic 4-space: [25]

  • {5/2,5,3,3}, {3,3,5,5/2}, {3,5,5/2,5}, and {5,5/2,5,3}.

Tessellations of hyperbolic 4-space

There are seven convex regular honeycombs and four star-honeycombs in H4 space. [26] Five convex ones are compact, and two are paracompact.

Five compact regular honeycombs in H4:

5 compact regular honeycombs
Name Schläfli
Symbol
{p,q,r,s}
Facet
type
{p,q,r}
Cell
type
{p,q}
Face
type
{p}
Face
figure
{s}
Edge
figure
{r,s}
Vertex
figure

{q,r,s}
Dual
Order-5 5-cell honeycomb {3,3,3,5} {3,3,3} {3,3} {3}{5} {3,5} {3,3,5} {5,3,3,3}
120-cell honeycomb {5,3,3,3} {5,3,3} {5,3} {5}{3} {3,3} {3,3,3} {3,3,3,5}
Order-5 tesseractic honeycomb {4,3,3,5} {4,3,3} {4,3} {4}{5} {3,5} {3,3,5} {5,3,3,4}
Order-4 120-cell honeycomb {5,3,3,4} {5,3,3} {5,3} {5}{4} {3,4} {3,3,4} {4,3,3,5}
Order-5 120-cell honeycomb {5,3,3,5} {5,3,3} {5,3} {5}{5} {3,5} {3,3,5} Self-dual

The two paracompact regular H4 honeycombs are: {3,4,3,4}, {4,3,4,3}.

2 paracompact regular honeycombs
Name Schläfli
Symbol
{p,q,r,s}
Facet
type
{p,q,r}
Cell
type
{p,q}
Face
type
{p}
Face
figure
{s}
Edge
figure
{r,s}
Vertex
figure

{q,r,s}
Dual
Order-4 24-cell honeycomb {3,4,3,4} {3,4,3} {3,4} {3}{4} {3,4} {4,3,4} {4,3,4,3}
Cubic honeycomb honeycomb {4,3,4,3} {4,3,4} {4,3} {4}{3} {4,3} {3,4,3} {3,4,3,4}

Noncompact solutions exist as Lorentzian Coxeter groups, and can be visualized with open domains in hyperbolic space (the fundamental 5-cell having some parts inaccessible beyond infinity). All honeycombs which are not shown in the set of tables below and do not have 2 in their Schläfli symbol are noncompact.

Spherical/Euclidean/hyperbolic(compact/paracompact/noncompact) honeycombs {p,q,r,s}
q=3, s=3
p \ r345
3 5-simplex t0.svg
{3,3,3,3}
Demitesseractic tetra hc.png
{3,3,4,3}

{3,3,5,3}
4 5-cube t0.svg
{4,3,3,3}

{4,3,4,3}

{4,3,5,3}
5
{5,3,3,3}

{5,3,4,3}

{5,3,5,3}
q=3, s=4
p \ r34
3 5-cube t4.svg
{3,3,3,4}

{3,3,4,4}
4 Tesseractic tetracomb.png
{4,3,3,4}

{4,3,4,4}
5
{5,3,3,4}

{5,3,4,4}
q=3, s=5
p \ r34
3
{3,3,4,5}
4
{4,3,4,5}
5
{5,3,3,5}

{5,3,4,5}
q=4, s=3
p \ r34
3 Icositetrachoronic tetracomb.png
{3,4,3,3}

{3,4,4,3}
4
{4,4,3,3}

{4,4,4,3}
q=4, s=4
p \ r34
3
{3,4,4,4}
4
{4,4,3,4}

{4,4,4,4}
q=4, s=5
p \ r34
3
{3,4,3,5}

{3,4,4,5}
4
{4,4,3,5}

{4,4,4,5}
q=5, s=3
p \ r34
3
{3,5,3,3}

{3,5,4,3}
4
{4,5,3,3}

{4,5,4,3}

Star tessellations of hyperbolic 4-space

There are four regular star-honeycombs in H4 space, all compact:

4 compact regular star-honeycombs
Name Schläfli
Symbol
{p,q,r,s}
Facet
type
{p,q,r}
Cell
type
{p,q}
Face
type
{p}
Face
figure
{s}
Edge
figure
{r,s}
Vertex
figure

{q,r,s}
Dual Density
Small stellated 120-cell honeycomb {5/2,5,3,3} {5/2,5,3} {5/2,5}{5/2}{3}{3,3} {5,3,3} {3,3,5,5/2}5
Pentagrammic-order 600-cell honeycomb {3,3,5,5/2} {3,3,5} {3,3} {3}{5/2}{5,5/2}{3,5,5/2}{5/2,5,3,3}5
Order-5 icosahedral 120-cell honeycomb {3,5,5/2,5}{3,5,5/2} {3,5} {3}{5}{5/2,5}{5,5/2,5}{5,5/2,5,3}10
Great 120-cell honeycomb {5,5/2,5,3}{5,5/2,5}{5,5/2}{5}{3} {5,3} {5/2,5,3}{3,5,5/2,5}10

6-apeirotopes

There is only one flat regular honeycomb of Euclidean 5-space: (previously listed above as tessellations) [24]

There are five flat regular regular honeycombs of hyperbolic 5-space, all paracompact: (previously listed above as tessellations) [25]

Tessellations of Euclidean 5-space

The hypercubic honeycomb is the only family of regular honeycombs that can tessellate each dimension, five or higher, formed by hypercube facets, four around every ridge.

Name Schläfli
{p1, p2, ..., pn1}
Facet
type
Vertex
figure
Dual
Square tiling {4,4}{4}{4}Self-dual
Cubic honeycomb {4,3,4}{4,3}{3,4}Self-dual
Tesseractic honeycomb {4,32,4}{4,32}{32,4}Self-dual
5-cube honeycomb {4,33,4}{4,33}{33,4}Self-dual
6-cube honeycomb {4,34,4}{4,34}{34,4}Self-dual
7-cube honeycomb {4,35,4}{4,35}{35,4}Self-dual
8-cube honeycomb {4,36,4}{4,36}{36,4}Self-dual
n-hypercubic honeycomb {4,3n−2,4}{4,3n−2}{3n−2,4}Self-dual

In E5, there are also the improper cases {4,3,3,4,2}, {2,4,3,3,4}, {3,3,4,3,2}, {2,3,3,4,3}, {3,4,3,3,2}, and {2,3,4,3,3}. In En, {4,3n−3,4,2} and {2,4,3n−3,4} are always improper Euclidean tessellations.

Tessellations of hyperbolic 5-space

There are 5 regular honeycombs in H5, all paracompact, which include infinite (Euclidean) facets or vertex figures: {3,4,3,3,3}, {3,3,4,3,3}, {3,3,3,4,3}, {3,4,3,3,4}, and {4,3,3,4,3}.

There are no compact regular tessellations of hyperbolic space of dimension 5 or higher and no paracompact regular tessellations in hyperbolic space of dimension 6 or higher.

5 paracompact regular honeycombs
Name Schläfli
Symbol
{p,q,r,s,t}
Facet
type
{p,q,r,s}
4-face
type
{p,q,r}
Cell
type
{p,q}
Face
type
{p}
Cell
figure
{t}
Face
figure
{s,t}
Edge
figure
{r,s,t}
Vertex
figure

{q,r,s,t}
Dual
5-orthoplex honeycomb {3,3,3,4,3} {3,3,3,4} {3,3,3} {3,3} {3}{3} {4,3} {3,4,3} {3,3,4,3} {3,4,3,3,3}
24-cell honeycomb honeycomb {3,4,3,3,3} {3,4,3,3} {3,4,3} {3,4} {3}{3} {3,3} {3,3,3} {4,3,3,3} {3,3,3,4,3}
16-cell honeycomb honeycomb {3,3,4,3,3} {3,3,4,3} {3,3,4} {3,3} {3}{3} {3,3} {4,3,3} {3,4,3,3} self-dual
Order-4 24-cell honeycomb honeycomb {3,4,3,3,4} {3,4,3,3} {3,4,3} {3,4} {3}{4} {3,4} {3,3,4} {4,3,3,4} {4,3,3,4,3}
Tesseractic honeycomb honeycomb {4,3,3,4,3} {4,3,3,4} {4,3,3} {4,3} {4}{3} {4,3} {3,4,3} {3,3,4,3} {3,4,3,3,4}

Since there are no regular star n-polytopes for n  5, that could be potential cells or vertex figures, there are no more hyperbolic star honeycombs in Hn for n  5.

Apeirotopes of rank 7 or more

Tessellations of hyperbolic 6-space and higher

There are no regular compact or paracompact tessellations of hyperbolic space of dimension 6 or higher. However, any Schläfli symbol of the form {p,q,r,s,...} not covered above (p,q,r,s,... natural numbers above 2, or infinity) will form a noncompact tessellation of hyperbolic n-space. [16]

Abstract polytopes

The abstract polytopes arose out of an attempt to study polytopes apart from the geometrical space they are embedded in. They include the tessellations of spherical, Euclidean and hyperbolic space, and of other manifolds. There are infinitely many of every rank greater than 1. See this atlas for a sample. Some notable examples of abstract regular polytopes that do not appear elsewhere in this list are the 11-cell, {3,5,3}, and the 57-cell, {5,3,5}, which have regular projective polyhedra as cells and vertex figures.

The elements of an abstract polyhedron are its body (the maximal element), its faces, edges, vertices and the null polytope or empty set. These abstract elements can be mapped into ordinary space or realised as geometrical figures. Some abstract polyhedra have well-formed or faithful realisations, others do not. A flag is a connected set of elements of each rank - for a polyhedron that is the body, a face, an edge of the face, a vertex of the edge, and the null polytope. An abstract polytope is said to be regular if its combinatorial symmetries are transitive on its flags - that is to say, that any flag can be mapped onto any other under a symmetry of the polyhedron. Abstract regular polytopes remain an active area of research.

Five such regular abstract polyhedra, which can not be realised faithfully and symmetrically, were identified by H. S. M. Coxeter in his book Regular Polytopes (1977) and again by J. M. Wills in his paper "The combinatorially regular polyhedra of index 2" (1987). [27] They are all topologically equivalent to toroids. Their construction, by arranging n faces around each vertex, can be repeated indefinitely as tilings of the hyperbolic plane. In the diagrams below, the hyperbolic tiling images have colors corresponding to those of the polyhedra images.

Polyhedron DU36 medial rhombic triacontahedron.png
Medial rhombic triacontahedron
Dodecadodecahedron.png
Dodecadodecahedron
DU41 medial triambic icosahedron.png
Medial triambic icosahedron
Ditrigonal dodecadodecahedron.png
Ditrigonal dodecadodecahedron
Excavated dodecahedron.png
Excavated dodecahedron
Vertex figure {5}, {5/2}
Regular polygon 5.svg Pentagram green.svg
(5.5/2)2
Dodecadodecahedron vertfig.png
{5}, {5/2}
Regular polygon 5.svg Pentagram green.svg
(5.5/3)3
Ditrigonal dodecadodecahedron vertfig.png
Medial triambic icosahedron face.svg
Faces30 rhombi
Rhombus definition2.svg
12 pentagons
12 pentagrams
Regular polygon 5.svg Pentagram green.svg
20 hexagons
Medial triambic icosahedron face.svg
12 pentagons
12 pentagrams
Regular polygon 5.svg Pentagram green.svg
20 hexagrams
Star hexagon face.png
Tiling Uniform tiling 45-t0.png
{4, 5}
Uniform tiling 552-t1.png
{5, 4}
Uniform tiling 65-t0.png
{6, 5}
Uniform tiling 553-t1.png
{5, 6}
Uniform tiling 66-t2.png
{6, 6}
χ −6−6−16−16−20

These occur as dual pairs as follows:

See also

Notes

  1. up to identity and idempotency

Related Research Articles

<span class="mw-page-title-main">Dual polyhedron</span> Polyhedron associated with another by swapping vertices for faces

In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.

In elementary geometry, a polytope is a geometric object with flat sides (faces). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a (k + 1)-polytope consist of k-polytopes that may have (k – 1)-polytopes in common.

<span class="mw-page-title-main">4-polytope</span> Four-dimensional geometric object with flat sides

In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.

A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex.

<span class="mw-page-title-main">Schläfli symbol</span> Notation that defines regular polytopes and tessellations

In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.

<span class="mw-page-title-main">Regular polytope</span> Polytope with highest degree of symmetry

In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. In particular, all its elements or j-faces — cells, faces and so on — are also transitive on the symmetries of the polytope, and are themselves regular polytopes of dimension jn.

<span class="mw-page-title-main">Vertex figure</span> Shape made by slicing off a corner of a polytope

In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.

<span class="mw-page-title-main">Triangular tiling</span> Regular tiling of the plane

In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}.

<span class="mw-page-title-main">Honeycomb (geometry)</span> Tiling of 3-or-more dimensional euclidian or hyperbolic space

In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.

<span class="mw-page-title-main">Uniform polytope</span> Isogonal polytope with uniform facets

In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons.

In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.

In geometry, a skew apeirohedron is an infinite skew polyhedron consisting of nonplanar faces or nonplanar vertex figures, allowing the figure to extend indefinitely without folding round to form a closed surface.

In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.

<span class="mw-page-title-main">Regular 4-polytope</span> Four-dimensional analogues of the regular polyhedra in three dimensions

In mathematics, a regular 4-polytope or regular polychoron is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions.

In geometry, the regular skew polyhedra are generalizations to the set of regular polyhedra which include the possibility of nonplanar faces or vertex figures. Coxeter looked at skew vertex figures which created new 4-dimensional regular polyhedra, and much later Branko Grünbaum looked at regular skew faces.

<span class="mw-page-title-main">Uniform honeycombs in hyperbolic space</span> Tiling of hyperbolic 3-space by uniform polyhedra

In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wythoff constructions, and represented by permutations of rings of the Coxeter diagrams for each family.

In geometry, a uniform honeycomb or uniform tessellation or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there is the same combination and arrangement of faces at each vertex. Its dimension can be clarified as n-honeycomb for an n-dimensional honeycomb.

<span class="mw-page-title-main">Order-6 tetrahedral honeycomb</span>

In hyperbolic 3-space, the order-6 tetrahedral honeycomb is a paracompact regular space-filling tessellation. It is paracompact because it has vertex figures composed of an infinite number of faces, and has all vertices as ideal points at infinity. With Schläfli symbol {3,3,6}, the order-6 tetrahedral honeycomb has six ideal tetrahedra around each edge. All vertices are ideal, with infinitely many tetrahedra existing around each vertex in a triangular tiling vertex figure.

<span class="mw-page-title-main">Order-6 hexagonal tiling honeycomb</span>

In the field of hyperbolic geometry, the order-6 hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells with an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

<span class="mw-page-title-main">Regular skew apeirohedron</span> Infinite regular skew polyhedron

In geometry, a regular skew apeirohedron is an infinite regular skew polyhedron. They have either skew regular faces or skew regular vertex figures.

References

  1. 1 2 McMullen, Peter (2004), "Regular polytopes of full rank", Discrete & Computational Geometry, 32: 1–35, doi:10.1007/s00454-004-0848-5, S2CID   46707382
  2. Coxeter (1973), p. 129.
  3. McMullen & Schulte (2002), p. 30.
  4. Johnson, N.W. (2018). "Chapter 11: Finite symmetry groups". Geometries and Transformations. Cambridge University Press. 11.1 Polytopes and Honeycombs, p. 224. ISBN   978-1-107-10340-5.
  5. Coxeter (1973), p. 120.
  6. Coxeter (1973), p. 124.
  7. Coxeter, Regular Complex Polytopes, p. 9
  8. Duncan, Hugh (28 September 2017). "Between a square rock and a hard pentagon: Fractional polygons". chalkdust.
  9. 1 2 McMullen & Schulte 2002.
  10. Coxeter (1973), pp. 66–67.
  11. Abstracts (PDF). Convex and Abstract Polytopes (May 19–21, 2005) and Polytopes Day in Calgary (May 22, 2005).
  12. McMullen (2004).
  13. Coxeter (1973), Table I: Regular polytopes, (iii) The three regular polytopes in n dimensions (n>=5), pp. 294–295.
  14. McMullen & Schulte (2002), "6C Projective Regular Polytopes" pp. 162-165.
  15. Grünbaum, B. (1977). "Regular Polyhedra—Old and New". Aequationes Mathematicae. 16 (1–2): 1–20. doi:10.1007/BF01836414. S2CID   125049930.
  16. 1 2 3 Roice Nelson and Henry Segerman, Visualizing Hyperbolic Honeycombs
  17. Irving Adler, A New Look at Geometry (2012 Dover edition), p.233
  18. Coxeter, H.S.M. (1938). "Regular Skew Polyhedra in Three and Four Dimensions". Proc. London Math. Soc. 2. 43: 33–62. doi:10.1112/plms/s2-43.1.33.
  19. Coxeter, H.S.M. (1985). "Regular and semi-regular polytopes II". Mathematische Zeitschrift. 188 (4): 559–591. doi:10.1007/BF01161657. S2CID   120429557.
  20. Conway, John H.; Burgiel, Heidi; Goodman-Strauss, Chaim (2008). "Chapter 23: Objects with Primary Symmetry, Infinite Platonic Polyhedra". The Symmetries of Things. Taylor & Francis. pp. 333–335. ISBN   978-1-568-81220-5.
  21. McMullen & Schulte (2002), p. 224.
  22. McMullen & Schulte (2002), Section 7E.
  23. Garner, C.W.L. (1967). "Regular Skew Polyhedra in Hyperbolic Three-Space". Can. J. Math. 19: 1179–1186. doi: 10.4153/CJM-1967-106-9 . S2CID   124086497. Note: His paper says there are 32, but one is self-dual, leaving 31.
  24. 1 2 3 Coxeter (1973), Table II: Regular honeycombs, p. 296.
  25. 1 2 3 4 Coxeter (1999), "Chapter 10".
  26. Coxeter (1999), "Chapter 10" Table IV, p. 213.
  27. David A. Richter. "The Regular Polyhedra (of index two)". Archived from the original on 2016-03-04. Retrieved 2015-03-13.

Citations

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
Space Family / /
E2 Uniform tiling {3[3]} δ3 hδ3 qδ3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 hδ4 qδ4
E4 Uniform 4-honeycomb {3[5]} δ5 hδ5 qδ5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 hδ6 qδ6
E6 Uniform 6-honeycomb {3[7]} δ7 hδ7 qδ7 222
E7 Uniform 7-honeycomb {3[8]} δ8 hδ8 qδ8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 hδ9 qδ9 152251521
E9 Uniform 9-honeycomb {3[10]}δ10hδ10qδ10
E10Uniform 10-honeycomb{3[11]}δ11hδ11qδ11
En-1Uniform (n-1)-honeycomb {3[n]} δn hδn qδn 1k22k1k21