Louis Kauffman

Last updated
Louis H. Kauffman
Louis H. Kauffman, Oct 2014.jpg
Kauffman in 2014
Born (1945-02-03) February 3, 1945 (age 79)
NationalityAmerican
Alma mater Princeton University
Massachusetts Institute of Technology
Known for Kauffman polynomial
Scientific career
Fields Mathematics
Institutions University of Illinois at Chicago
Thesis Cyclic Branched-Covers, O(n)-Actions and Hypersurface Singularities  (1972)
Doctoral advisor William Browder

Louis Hirsch Kauffman (born February 3, 1945) is an American mathematician, mathematical physicist, and professor of mathematics in the Department of Mathematics, Statistics, and Computer Science at the University of Illinois at Chicago. He does research in topology, knot theory, topological quantum field theory, quantum information theory, and diagrammatic and categorical mathematics. He is best known for the introduction and development of the bracket polynomial and the Kauffman polynomial.

Contents

Biography

Kauffman was valedictorian of his graduating class at Norwood Norfolk Central High School in 1962. He received his B.S. at the Massachusetts Institute of Technology in 1966 and his Ph.D. in mathematics from Princeton University in 1972, with thesis Cyclic Branched-Covers, O(n)-Actions and Hypersurface Singularities written under the supervision of William Browder. [1]

Kauffman has worked at many places as a visiting professor and researcher, including the University of Zaragoza in Spain, the University of Iowa in Iowa City, the Institut des Hautes Études Scientifiques in Bures Sur Yevette, France, the Institut Henri Poincaré in Paris, France, the University of Bologna, Italy, the Federal University of Pernambuco in Recife, Brazil, and the Newton Institute in Cambridge, England. [2]

He is the founding editor and one of the managing editors of the Journal of Knot Theory and Its Ramifications , and editor of the World Scientific Book Series On Knots and Everything. He writes a column entitled Virtual Logic for the journal Cybernetics and Human Knowing. From 2005 to 2008, he was president of the American Society for Cybernetics. He plays clarinet in the ChickenFat Klezmer Orchestra in Chicago.

Work

Kauffman's research interests are in the fields of cybernetics, topology, and mathematical physics. His work is primarily on the topics of knot theory and its connections with statistical mechanics, quantum theory, algebra, combinatorics, and foundations. [3] In topology, he introduced and developed the bracket polynomial and Kauffman polynomial.

Bracket polynomial

In the mathematical field of knot theory, the bracket polynomial, also known as the Kauffman bracket, is a polynomial invariant of framed links. Although it is not an invariant of knots or links (as it is not invariant under type I Reidemeister moves), a suitably "normalized" version yields the famous knot invariant called the Jones polynomial. The bracket polynomial is important in unifying the Jones polynomial with other quantum invariants. In particular, Kauffman's interpretation of the Jones polynomial allows generalization to state sum invariants of 3-manifolds. Subsequently, the bracket polynomial formed the basis for Mikhail Khovanov's construction of a homology for knots and links, creating a stronger invariant than the Jones polynomial and such that the graded Euler characteristic of the Khovanov homology is equal to the original Jones polynomial. The generators for the chain complex of the Khovanov homology are states of the bracket polynomial decorated with elements of a Frobenius algebra.

Kauffman polynomial

The Kauffman polynomial is a 2-variable knot polynomial due to Louis Kauffman. It is defined as

where is the writhe and is a regular isotopy invariant which generalizes the bracket polynomial.

Discrete ordered calculus

In 1994, Kauffman and Tom Etter wrote a draft proposal for a non-commutative discrete ordered calculus (DOC), which they presented in revised form in 1996. [4] In the meantime, the theory was presented in a modified form by Kauffman and H. Pierre Noyes together with a presentation of a derivation of free space Maxwell's equations on this basis. [5]

Awards and honors

He won a Lester R. Ford Award (with Thomas Banchoff) in 1978. [6] Kauffman is the 1993 recipient of the Warren McCulloch award [7] of the American Society for Cybernetics and the 1996 award of the Alternative Natural Philosophy Association for his work in discrete physics. He is the 2014 recipient of the Norbert Wiener award of the American Society for Cybernetics. [8]

In 2012 he became a fellow of the American Mathematical Society. [9]

Publications

Louis H. Kauffman is author of several monographs on knot theory and mathematical physics. His publication list numbers over 170. [2] Books:

Articles and papers, a selection:

Related Research Articles

<span class="mw-page-title-main">Knot theory</span> Study of mathematical knots

In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing it through itself.

<span class="mw-page-title-main">Knot invariant</span> Function of a knot that takes the same value for equivalent knots

In the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some invariants are indeed numbers (algebraic), but invariants can range from the simple, such as a yes/no answer, to those as complex as a homology theory (for example, "a knot invariant is a rule that assigns to any knot K a quantity φ(K) such that if K and K' are equivalent then φ(K) = φ(K')."). Research on invariants is not only motivated by the basic problem of distinguishing one knot from another but also to understand fundamental properties of knots and their relations to other branches of mathematics. Knot invariants are thus used in knot classification, both in "enumeration" and "duplication removal".

A knot invariant is a quantity defined on the set of all knots, which takes the same value for any two equivalent knots. For example, a knot group is a knot invariant.

Typically a knot invariant is a combinatorial quantity defined on knot diagrams. Thus if two knot diagrams differ with respect to some knot invariant, they must represent different knots. However, as is generally the case with topological invariants, if two knot diagrams share the same values with respect to a [single] knot invariant, then we still cannot conclude that the knots are the same.

<span class="mw-page-title-main">Knot polynomial</span>

In the mathematical field of knot theory, a knot polynomial is a knot invariant in the form of a polynomial whose coefficients encode some of the properties of a given knot.

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable with integer coefficients.

In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a version of this polynomial, now called the Alexander–Conway polynomial, could be computed using a skein relation, although its significance was not realized until the discovery of the Jones polynomial in 1984. Soon after Conway's reworking of the Alexander polynomial, it was realized that a similar skein relation was exhibited in Alexander's paper on his polynomial.

Algorithmic topology, or computational topology, is a subfield of topology with an overlap with areas of computer science, in particular, computational geometry and computational complexity theory.

In mathematics, Khovanov homology is an oriented link invariant that arises as the cohomology of a cochain complex. It may be regarded as a categorification of the Jones polynomial.

In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called symplectic Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold. A third construction, also due to Floer, associates homology groups to closed three-dimensional manifolds using the Yang–Mills functional. These constructions and their descendants play a fundamental role in current investigations into the topology of symplectic and contact manifolds as well as (smooth) three- and four-dimensional manifolds.

In the mathematical field of knot theory, the bracket polynomial is a polynomial invariant of framed links. Although it is not an invariant of knots or links, a suitably "normalized" version yields the famous knot invariant called the Jones polynomial. The bracket polynomial plays an important role in unifying the Jones polynomial with other quantum invariants. In particular, Kauffman's interpretation of the Jones polynomial allows generalization to invariants of 3-manifolds.

<span class="mw-page-title-main">Unknotting problem</span> Determining whether a knot is the unknot

In mathematics, the unknotting problem is the problem of algorithmically recognizing the unknot, given some representation of a knot, e.g., a knot diagram. There are several types of unknotting algorithms. A major unresolved challenge is to determine if the problem admits a polynomial time algorithm; that is, whether the problem lies in the complexity class P.

In knot theory, a virtual knot is a generalization of knots in 3-dimensional Euclidean space, R3, to knots in thickened surfaces modulo an equivalence relation called stabilization/destabilization. Here is required to be closed and oriented. Virtual knots were first introduced by Kauffman (1999).

In the mathematical field of knot theory, the Arf invariant of a knot, named after Cahit Arf, is a knot invariant obtained from a quadratic form associated to a Seifert surface. If F is a Seifert surface of a knot, then the homology group H1(F, Z/2Z) has a quadratic form whose value is the number of full twists mod 2 in a neighborhood of an embedded circle representing an element of the homology group. The Arf invariant of this quadratic form is the Arf invariant of the knot.

In knot theory, the Kauffman polynomial is a 2-variable knot polynomial due to Louis Kauffman. It is initially defined on a link diagram as

Mikhail Khovanov is a Russian-American professor of mathematics at Columbia University who works on representation theory, knot theory, and algebraic topology. He is known for introducing Khovanov homology for links, which was one of the first examples of categorification.

<span class="mw-page-title-main">History of knot theory</span>

Knots have been used for basic purposes such as recording information, fastening and tying objects together, for thousands of years. The early significant stimulus in knot theory would arrive later with Sir William Thomson and his vortex theory of the atom.

<span class="mw-page-title-main">Tomasz Mrowka</span> American mathematician

Tomasz Mrowka is an American mathematician specializing in differential geometry and gauge theory. He is the Singer Professor of Mathematics and former head of the Department of Mathematics at the Massachusetts Institute of Technology.

In the mathematical field of knot theory, a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement.

In theoretical physics, the six-dimensional (2,0)-superconformal field theory is a quantum field theory whose existence is predicted by arguments in string theory. It is still poorly understood because there is no known description of the theory in terms of an action functional. Despite the inherent difficulty in studying this theory, it is considered to be an interesting object for a variety of reasons, both physical and mathematical.

Hernando Burgos Soto is a Canadian writer and mathematician, professor of mathematics at George Brown College. He is the author of several math papers in which he introduced some mathematics concepts and extended to tangles some celebrated results of knot theory about the Khovanov homology and the Jones polynomial. During his career as a mathematician, his interests have included Mathematical Statistics, Knot Theory, Algebraic Topology and more recently Mathematical Finance. He is comfortable writing in English and Spanish. When writing in Spanish, he works in the area of prose fiction writing short stories. Some of his short stories were published at the website Cuentos y Cuentos.

References

  1. Louis Kauffman at the Mathematics Genealogy Project
  2. 1 2 "Math 569 - Knot Theory - Spring 2017".
  3. "Presentation". Archived from the original on 2008-09-17. Retrieved 2007-09-26.
  4. T. Etter, L.H. Kauffman, ANPA West Journal, vol. 6, no. 1, pp. 3–5
  5. Louis H. Kauffman, H. Pierre Noyes, Discrete physics and the derivation of electromagnetism from the formalism of quantum mechanics, Proceedings of the Royal Society London A (1996), vol. 452, pp. 81–95
  6. Kauffman, Louis; Banchoff, Thomas (1977). "Immersions and Mod-2 quadratic forms". The American Mathematical Monthly . 84: 168–185. doi:10.2307/2319486. JSTOR   2319486.
  7. "ASC Awards". asc-cybernetics.org. Retrieved May 12, 2024.
  8. About SSC: Awards, retrieved 2014-11-02.
  9. List of Fellows of the American Mathematical Society, retrieved 2013-01-27.