Lyapunov vector

Last updated

In applied mathematics and dynamical system theory, Lyapunov vectors, named after Aleksandr Lyapunov, describe characteristic expanding and contracting directions of a dynamical system. They have been used in predictability analysis and as initial perturbations for ensemble forecasting in numerical weather prediction. [1] In modern practice they are often replaced by bred vectors for this purpose. [2]

Contents

Mathematical description

Depiction of the asymmetric growth of perturbations along an evolved trajectory. LyapunovDiagram.svg
Depiction of the asymmetric growth of perturbations along an evolved trajectory.

Lyapunov vectors are defined along the trajectories of a dynamical system. If the system can be described by a d-dimensional state vector the Lyapunov vectors , point in the directions in which an infinitesimal perturbation will grow asymptotically, exponentially at an average rate given by the Lyapunov exponents .

Numerical method

If the dynamical system is differentiable and the Lyapunov vectors exist, they can be found by forward and backward iterations of the linearized system along a trajectory. [5] [6] Let map the system with state vector at time to the state at time . The linearization of this map, i.e. the Jacobian matrix describes the change of an infinitesimal perturbation . That is


Starting with an identity matrix the iterations


where is given by the Gram-Schmidt QR decomposition of , will asymptotically converge to matrices that depend only on the points of a trajectory but not on the initial choice of . The rows of the orthogonal matrices define a local orthogonal reference frame at each point and the first rows span the same space as the Lyapunov vectors corresponding to the largest Lyapunov exponents. The upper triangular matrices describe the change of an infinitesimal perturbation from one local orthogonal frame to the next. The diagonal entries of are local growth factors in the directions of the Lyapunov vectors. The Lyapunov exponents are given by the average growth rates


and by virtue of stretching, rotating and Gram-Schmidt orthogonalization the Lyapunov exponents are ordered as . When iterated forward in time a random vector contained in the space spanned by the first columns of will almost surely asymptotically grow with the largest Lyapunov exponent and align with the corresponding Lyapunov vector. In particular, the first column of will point in the direction of the Lyapunov vector with the largest Lyapunov exponent if is large enough. When iterated backward in time a random vector contained in the space spanned by the first columns of will almost surely, asymptotically align with the Lyapunov vector corresponding to the th largest Lyapunov exponent, if and are sufficiently large. Defining we find . Choosing the first entries of randomly and the other entries zero, and iterating this vector back in time, the vector aligns almost surely with the Lyapunov vector corresponding to the th largest Lyapunov exponent if and are sufficiently large. Since the iterations will exponentially blow up or shrink a vector it can be re-normalized at any iteration point without changing the direction.

Related Research Articles

<span class="mw-page-title-main">Lyapunov exponent</span> The rate of separation of infinitesimally close trajectories

In mathematics, the Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system is a quantity that characterizes the rate of separation of infinitesimally close trajectories. Quantitatively, two trajectories in phase space with initial separation vector diverge at a rate given by

In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak disturbance to the system. If the disturbance is not too large, the various physical quantities associated with the perturbed system can be expressed as "corrections" to those of the simple system. These corrections, being small compared to the size of the quantities themselves, can be calculated using approximate methods such as asymptotic series. The complicated system can therefore be studied based on knowledge of the simpler one. In effect, it is describing a complicated unsolved system using a simple, solvable system.

In mathematics, the Rayleigh quotient for a given complex Hermitian matrix and nonzero vector is defined as:

<span class="mw-page-title-main">Lyapunov stability</span> Property of a dynamical system where solutions near an equilibrium point remain so

Various types of stability may be discussed for the solutions of differential equations or difference equations describing dynamical systems. The most important type is that concerning the stability of solutions near to a point of equilibrium. This may be discussed by the theory of Aleksandr Lyapunov. In simple terms, if the solutions that start out near an equilibrium point stay near forever, then is Lyapunov stable. More strongly, if is Lyapunov stable and all solutions that start out near converge to , then is said to be asymptotically stable. The notion of exponential stability guarantees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge. The idea of Lyapunov stability can be extended to infinite-dimensional manifolds, where it is known as structural stability, which concerns the behavior of different but "nearby" solutions to differential equations. Input-to-state stability (ISS) applies Lyapunov notions to systems with inputs.

<span class="mw-page-title-main">Curvilinear coordinates</span> Coordinate system whose directions vary in space

In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally invertible at each point. This means that one can convert a point given in a Cartesian coordinate system to its curvilinear coordinates and back. The name curvilinear coordinates, coined by the French mathematician Lamé, derives from the fact that the coordinate surfaces of the curvilinear systems are curved.

In electrical engineering, a differential-algebraic system of equations (DAEs) is a system of equations that either contains differential equations and algebraic equations, or is equivalent to such a system. In mathematics these are examples of differential algebraic varieties and correspond to ideals in differential polynomial rings (see the article on differential algebra for the algebraic setup.

In linear algebra, an eigenvector or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted by , is the factor by which the eigenvector is scaled.

The Lanczos algorithm is an iterative method devised by Cornelius Lanczos that is an adaptation of power methods to find the "most useful" eigenvalues and eigenvectors of an Hermitian matrix, where is often but not necessarily much smaller than . Although computationally efficient in principle, the method as initially formulated was not useful, due to its numerical instability.

<span class="mw-page-title-main">Hyperbolic equilibrium point</span>

In the study of dynamical systems, a hyperbolic equilibrium point or hyperbolic fixed point is a fixed point that does not have any center manifolds. Near a hyperbolic point the orbits of a two-dimensional, non-dissipative system resemble hyperbolas. This fails to hold in general. Strogatz notes that "hyperbolic is an unfortunate name—it sounds like it should mean 'saddle point'—but it has become standard." Several properties hold about a neighborhood of a hyperbolic point, notably

In mathematics, preconditioning is the application of a transformation, called the preconditioner, that conditions a given problem into a form that is more suitable for numerical solving methods. Preconditioning is typically related to reducing a condition number of the problem. The preconditioned problem is then usually solved by an iterative method.

<span class="mw-page-title-main">Stability theory</span> Part of mathematics that addresses the stability of solutions

In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation, for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature at a later time as a result of the maximum principle. In partial differential equations one may measure the distances between functions using Lp norms or the sup norm, while in differential geometry one may measure the distance between spaces using the Gromov–Hausdorff distance.

In theoretical physics, the BRST formalism, or BRST quantization denotes a relatively rigorous mathematical approach to quantizing a field theory with a gauge symmetry. Quantization rules in earlier quantum field theory (QFT) frameworks resembled "prescriptions" or "heuristics" more than proofs, especially in non-abelian QFT, where the use of "ghost fields" with superficially bizarre properties is almost unavoidable for technical reasons related to renormalization and anomaly cancellation.

In computational chemistry, a constraint algorithm is a method for satisfying the Newtonian motion of a rigid body which consists of mass points. A restraint algorithm is used to ensure that the distance between mass points is maintained. The general steps involved are: (i) choose novel unconstrained coordinates, (ii) introduce explicit constraint forces, (iii) minimize constraint forces implicitly by the technique of Lagrange multipliers or projection methods.

Numerical continuation is a method of computing approximate solutions of a system of parameterized nonlinear equations,

Synchronization of chaos is a phenomenon that may occur when two or more dissipative chaotic systems are coupled.

In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem.

Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations. There are many similarities to linear least squares, but also some significant differences. In economic theory, the non-linear least squares method is applied in (i) the probit regression, (ii) threshold regression, (iii) smooth regression, (iv) logistic link regression, (v) Box–Cox transformed regressors ().

<span class="mw-page-title-main">Lagrangian coherent structure</span> Distinguished surfaces of dynamic trajectories

Lagrangian coherent structures (LCSs) are distinguished surfaces of trajectories in a dynamical system that exert a major influence on nearby trajectories over a time interval of interest. The type of this influence may vary, but it invariably creates a coherent trajectory pattern for which the underlying LCS serves as a theoretical centerpiece. In observations of tracer patterns in nature, one readily identifies coherent features, but it is often the underlying structure creating these features that is of interest.

<span class="mw-page-title-main">Chaotic mixing</span>

In chaos theory and fluid dynamics, chaotic mixing is a process by which flow tracers develop into complex fractals under the action of a fluid flow. The flow is characterized by an exponential growth of fluid filaments. Even very simple flows, such as the blinking vortex, or finitely resolved wind fields can generate exceptionally complex patterns from initially simple tracer fields.

In the mathematics of dynamical systems, the concept of Lyapunov dimension was suggested by Kaplan and Yorke for estimating the Hausdorff dimension of attractors. Further the concept has been developed and rigorously justified in a number of papers, and nowadays various different approaches to the definition of Lyapunov dimension are used. Remark that the attractors with noninteger Hausdorff dimension are called strange attractors. Since the direct numerical computation of the Hausdorff dimension of attractors is often a problem of high numerical complexity, estimations via the Lyapunov dimension became widely spread. The Lyapunov dimension was named after the Russian mathematician Aleksandr Lyapunov because of the close connection with the Lyapunov exponents.

References

  1. Kalnay, E. (2007). Atmospheric Modeling, Data Assimilation and Predictability. Cambridge: Cambridge University Press.
  2. Kalnay, E.; Corazza, M.; Cai, M. (2002). "Are Bred Vectors the same as Lyapunov Vectors?". EGS XXVII General Assembly. Archived from the original on 2010-06-05.
  3. Ott, Edward (2002). Chaos in Dynamical Systems (Second ed.). Cambridge University Press.
  4. Ott, W.; Yorke, J. A. (2008). "When Lyapunov exponents fail to exist". Phys. Rev. E. 78 (5): 056203. Bibcode:2008PhRvE..78e6203O. doi:10.1103/PhysRevE.78.056203. PMID   19113196.
  5. Ginelli, F.; Poggi, P.; Turchi, A.; Chaté, H.; Livi, R.; Politi, A. (2007). "Characterizing Dynamics with Covariant Lyapunov Vectors". Phys. Rev. Lett. 99 (13): 130601. arXiv: 0706.0510 . Bibcode:2007PhRvL..99m0601G. doi:10.1103/PhysRevLett.99.130601. PMID   17930570. S2CID   21992110.
  6. Kuptsov, Pavel V.; Parlitz, Ulrich (2012). "Theory and Computation of Covariant Lyapunov Vectors". Journal of Nonlinear Science. 22 (5): 727–762. arXiv: 1105.5228 . Bibcode:2012JNS....22..727K. doi:10.1007/s00332-012-9126-5. S2CID   253814783.