Marginal rate of substitution

Last updated

In economics, the marginal rate of substitution (MRS) is the rate at which a consumer can give up some amount of one good in exchange for another good while maintaining the same level of utility. At equilibrium consumption levels (assuming no externalities), marginal rates of substitution are identical. The marginal rate of substitution is one of the three factors from marginal productivity, the others being marginal rates of transformation and marginal productivity of a factor. [1]

Contents

As the slope of indifference curve

Under the standard assumption of neoclassical economics that goods and services are continuously divisible, the marginal rates of substitution will be the same regardless of the direction of exchange, and will correspond to the slope of an indifference curve (more precisely, to the slope multiplied by −1) passing through the consumption bundle in question, at that point: mathematically, it is the implicit derivative. MRS of X for Y is the amount of Y which a consumer can exchange for one unit of X locally. The MRS is different at each point along the indifference curve thus it is important to keep locus in the definition. Further on this assumption, or otherwise on the assumption that utility is quantified, the marginal rate of substitution of good or service X for good or service Y (MRSxy) is also equivalent to the marginal utility of X over the marginal utility of Y. Formally,

It is important to note that when comparing bundles of goods X and Y that give a constant utility (points along an indifference curve), the marginal utility of X is measured in terms of units of Y that is being given up.

For example, if the MRSxy = 2, the consumer will give up 2 units of Y to obtain 1 additional unit of X.

As one moves down a (standardly convex) indifference curve, the marginal rate of substitution decreases (as measured by the absolute value of the slope of the indifference curve, which decreases). This is known as the law of diminishing marginal rate of substitution.

Since the indifference curve is convex with respect to the origin and we have defined the MRS as the negative slope of the indifference curve,

Simple mathematical analysis

Assume the consumer utility function is defined by , where U is consumer utility, x and y are goods. Then the marginal rate of substitution can be computed via partial differentiation, as follows.

Also, note that:

where is the marginal utility with respect to good x and is the marginal utility with respect to good y.

By taking the total differential of the utility function equation, we obtain the following results:

, or substituting from above,
, or, without loss of generality, the total derivative of the utility function with respect to good x,
, that is,
.

Through any point on the indifference curve, dU/dx = 0, because U = c, where c is a constant. It follows from the above equation that:

, or rearranging

The marginal rate of substitution is defined as the absolute value of the slope of the indifference curve at whichever commodity bundle quantities are of interest. That turns out to equal the ratio of the marginal utilities:

.

When consumers maximize utility with respect to a budget constraint, the indifference curve is tangent to the budget line, therefore, with m representing slope:

Therefore, when the consumer is choosing his utility maximized market basket on his budget line,

This important result tells us that utility is maximized when the consumer's budget is allocated so that the marginal utility per unit of money spent is equal for each good. If this equality did not hold, the consumer could increase his/her utility by cutting spending on the good with lower marginal utility per unit of money and increase spending on the other good. To decrease the marginal rate of substitution, the consumer must buy more of the good for which he/she wishes the marginal utility to fall for (due to the law of diminishing marginal utility).

Diminishing Marginal rate of Substitution

An important principle of economic theory is that marginal rate of substitution of X for Y diminishes as more and more of good X is substituted for good Y. In other words, as the consumer has more and more of good X, he is prepared to forego less and less of good Y.

It means that as the consumer's stock of X increases and his stock of Y decreases, he is willing to forego less and less of Y for a given increment in X. In other words, the marginal rate of substitution of X for Y falls as the consumer has more of X and less of Y. That the marginal rate of substitution of X for Y diminishes can also be known from drawing tangents at different points on an indifference curve.

Using MRS to determine Convexity

When analyzing the utility function of consumer's in terms of determining if they are convex or not. For the horizon of two goods we can apply a quick derivative test (take the derivative of MRS) to determine if our consumer's preferences are convex. If the derivative of MRS is negative the utility curve would be concave down meaning that it has a maximum and then decreases on either side of the maximum. This utility curve may have an appearance similar to that of a lower case n. If the derivative of MRS is equal to 0 the utility curve would be linear, the slope would stay constant throughout the utility curve. If the derivative of MRS is positive the utility curve would be convex up meaning that it has a minimum and then increases on either side of the minimum. This utility curve may have an appearance similar to that of a u. These statements are shown mathematically below.

For more than two variables, the use of the Hessian matrix is required.

See also

Related Research Articles

In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g. More precisely, if is the function such that for every x, then the chain rule is, in Lagrange's notation,

<span class="mw-page-title-main">Derivative</span> Instantaneous rate of change (mathematics)

In mathematics, the derivative shows the sensitivity of change of a function's output with respect to the input. Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances.

In economics, utility is a measure of the satisfaction that a certain person has from a certain state of the world. Over time, the term has been used in two different meanings.

<span class="mw-page-title-main">Indifference curve</span> Concept in economics

In economics, an indifference curve connects points on a graph representing different quantities of two goods, points between which a consumer is indifferent. That is, any combinations of two products indicated by the curve will provide the consumer with equal levels of utility, and the consumer has no preference for one combination or bundle of goods over a different combination on the same curve. One can also refer to each point on the indifference curve as rendering the same level of utility (satisfaction) for the consumer. In other words, an indifference curve is the locus of various points showing different combinations of two goods providing equal utility to the consumer. Utility is then a device to represent preferences rather than something from which preferences come. The main use of indifference curves is in the representation of potentially observable demand patterns for individual consumers over commodity bundles.

The calculus of variations is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations.

Marginalism is a theory of economics that attempts to explain the discrepancy in the value of goods and services by reference to their secondary, or marginal, utility. It states that the reason why the price of diamonds is higher than that of water, for example, owes to the greater additional satisfaction of the diamonds over the water. Thus, while the water has greater total utility, the diamond has greater marginal utility.

The theory of consumer choice is the branch of microeconomics that relates preferences to consumption expenditures and to consumer demand curves. It analyzes how consumers maximize the desirability of their consumption, by maximizing utility subject to a consumer budget constraint. Factors influencing consumers' evaluation of the utility of goods include: income level, cultural factors, product information and physio-psychological factors.

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem.

In mathematics, an implicit equation is a relation of the form where R is a function of several variables. For example, the implicit equation of the unit circle is

<span class="mw-page-title-main">Separation of variables</span> Technique for solving differential equations

In mathematics, separation of variables is any of several methods for solving ordinary and partial differential equations, in which algebra allows one to rewrite an equation so that each of two variables occurs on a different side of the equation.

<span class="mw-page-title-main">Legendre transformation</span> Mathematical transformation

In mathematics, the Legendre transformation, first introduced by Adrien-Marie Legendre in 1787 when studying the minimal surface problem, is an involutive transformation on real-valued functions that are convex on a real variable. Specifically, if a real-valued multivariable function is convex on one of its independent real variables, then the Legendre transform with respect to this variable is applicable to the function. In physical problems, it is used to convert functions of one quantity into functions of the conjugate quantity. In this way, it is commonly used in classical mechanics to derive the Hamiltonian formalism out of the Lagrangian formalism and in thermodynamics to derive the thermodynamic potentials, as well as in the solution of differential equations of several variables.

<span class="mw-page-title-main">Maxwell relations</span> Equations involving the partial derivatives of thermodynamic quantities

Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials. These relations are named for the nineteenth-century physicist James Clerk Maxwell.

In microeconomics, a consumer's Marshallian demand function is the quantity they demand of a particular good as a function of its price, their income, and the prices of other goods, a more technical exposition of the standard demand function. It is a solution to the utility maximization problem of how the consumer can maximize their utility for given income and prices. A synonymous term is uncompensated demand function, because when the price rises the consumer is not compensated with higher nominal income for the fall in their real income, unlike in the Hicksian demand function. Thus the change in quantity demanded is a combination of a substitution effect and a wealth effect. Although Marshallian demand is in the context of partial equilibrium theory, it is sometimes called Walrasian demand as used in general equilibrium theory.

In mathematics, the total derivative of a function f at a point is the best linear approximation near this point of the function with respect to its arguments. Unlike partial derivatives, the total derivative approximates the function with respect to all of its arguments, not just a single one. In many situations, this is the same as considering all partial derivatives simultaneously. The term "total derivative" is primarily used when f is a function of several variables, because when f is a function of a single variable, the total derivative is the same as the ordinary derivative of the function.

In economics, an ordinal utility function is a function representing the preferences of an agent on an ordinal scale. Ordinal utility theory claims that it is only meaningful to ask which option is better than the other, but it is meaningless to ask how much better it is or how good it is. All of the theory of consumer decision-making under conditions of certainty can be, and typically is, expressed in terms of ordinal utility.

In mathematics, a change of variables is a basic technique used to simplify problems in which the original variables are replaced with functions of other variables. The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem.

Shephard's lemma is a major result in microeconomics having applications in the theory of the firm and in consumer choice. The lemma states that if indifference curves of the expenditure or cost function are convex, then the cost minimizing point of a given good with price is unique. The idea is that a consumer will buy a unique ideal amount of each item to minimize the price for obtaining a certain level of utility given the price of goods in the market.

Elasticity of substitution is the ratio of percentage change in capital-labour ratio with the percentage change in Marginal Rate of Technical Substitution. In a competitive market, it measures the percentage change in the two inputs used in response to a percentage change in their prices. It gives a measure of the curvature of an isoquant, and thus, the substitutability between inputs, i.e. how easy it is to substitute one input for the other.

In differential calculus, there is no single uniform notation for differentiation. Instead, various notations for the derivative of a function or variable have been proposed by various mathematicians. The usefulness of each notation varies with the context, and it is sometimes advantageous to use more than one notation in a given context. The most common notations for differentiation are listed below.

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References

  1. Dorfman (2008)  "Marginal Productivity Theory"

Adam Hayes. (2021, March 31). Inside the marginal rate of substitution. Investopedia. Jerelin, R. (2017, May 30). Diminishing marginal rate of substitution | Indifference curve | Economics. Economics Discussion