Mark 11 nuclear bomb

Last updated

The Mark 11 nuclear bomb was an American nuclear bomb developed from the earlier Mark 8 nuclear bomb in the mid-1950s. Like the Mark 8, the Mark 11 was an earth-penetrating weapon, also known as a nuclear bunker buster bomb.

Contents

The Mk-11 nuclear bomb Mk11 mark-91-pic1.jpg
The Mk-11 nuclear bomb

Description

As with the Mark 8, the Mark 11 was a gun-type nuclear bomb (see also: gun-type assembly weapon). It used a fixed large target assembly of highly enriched uranium (HEU), a gun-like barrel, and a powder charge and uranium bullet or projectile fired up the barrel into the target.

The Mark 11 was first produced in 1956, and was in service until 1960. A total of 40 were produced, replacing but not expanding the quantity of Mark 8 bombs. It was 14 inches (36 cm) in diameter and 147 inches (3.7 m) long, with a weight of 3,210 to 3,500 pounds (1,460 to 1,590 kg). [1] Yield was reportedly the same as the Mark 8, 25 to 30 kilotons.

The two bombs reportedly used the same basic fissile weapon design, but the Mark 11 had a much more modern external casing designed to penetrate further and more reliably into the ground. The Mark 8 had a flat nose, much like a torpedo. The Mark 11 nose was a pointed ogive shape. The MK-11 also known as the MK-91 had variable yields by changing the target rings. A major difference over the MK-8 was that the MK-91 had an electric operated actuator as a safety device that would rotate a spline ring to prevent the projectile from being fired into the target rings. The MK-8 had no safety devices. Upon release from the delivery aircraft detonation would occur after the black powder fuzes burned 90-110 seconds. The MK-91 was a deep penetrating weapon in many surface materials. A "PHOEBE" polonium neutron initiator increased the nuclear detonation efficiency.

See also

Citations

  1. Complete List of All U.S. Nuclear Weapons

Bibliography

Related Research Articles

<span class="mw-page-title-main">Little Boy</span> Atomic bomb dropped on Hiroshima

Little Boy was the name of the type of atomic bomb used in the bombing of the Japanese city of Hiroshima on 6 August 1945 during World War II, making it the first nuclear weapon used in warfare. The bomb was dropped by the Boeing B-29 Superfortress Enola Gay piloted by Colonel Paul W. Tibbets Jr., commander of the 509th Composite Group, and Captain Robert A. Lewis. It exploded with an energy of approximately 15 kilotons of TNT (63 TJ) and caused widespread death and destruction throughout the city. The Hiroshima bombing was the second nuclear explosion in history, after the Trinity nuclear test.

<span class="mw-page-title-main">Nuclear bunker buster</span> Earth-penetrating nuclear weapon

A nuclear bunker buster, also known as an earth-penetrating weapon (EPW), is the nuclear equivalent of the conventional bunker buster. The non-nuclear component of the weapon is designed to penetrate soil, rock, or concrete to deliver a nuclear warhead to an underground target. These weapons would be used to destroy hardened, underground military bunkers or other below-ground facilities. An underground explosion releases a larger fraction of its energy into the ground, compared to a surface burst or air burst explosion at or above the surface, and so can destroy an underground target using a lower explosive yield. This in turn could lead to a reduced amount of radioactive fallout. However, it is unlikely that the explosion would be completely contained underground. As a result, significant amounts of rock and soil would be rendered radioactive and lofted as dust or vapor into the atmosphere, generating significant fallout.

<span class="mw-page-title-main">Armour-piercing ammunition</span> Ammunition type designed to penetrate armour

Armour-piercing ammunition (AP) is a type of projectile designed to penetrate armour protection, most often including naval armour, body armour, vehicle armour.

<span class="mw-page-title-main">Nuclear weapon design</span> Process by which nuclear WMDs are designed and produced

Nuclear weapon designs are physical, chemical, and engineering arrangements that cause the physics package of a nuclear weapon to detonate. There are three existing basic design types:

<span class="mw-page-title-main">Davy Crockett (nuclear device)</span> American nuclear recoilless gun

The M-28 or M-29 Davy Crockett Weapon System was a tactical nuclear recoilless smoothbore gun for firing the M388 nuclear projectile, armed with the W54 nuclear warhead, that was deployed by the United States during the Cold War. It was the first project assigned to the United States Army Weapon Command in Rock Island, Illinois. It remains one of the smallest nuclear weapon systems ever built, with a yield of 20 tonnes of TNT (84 GJ). It is named after American folk hero, soldier, and congressman Davy Crockett.

<span class="mw-page-title-main">Shell (projectile)</span> Payload-carrying projectile

A shell, in a military context, is a projectile whose payload contains an explosive, incendiary, or other chemical filling. Originally it was called a bombshell, but "shell" has come to be unambiguous in a military context. A shell can hold a tracer.

<span class="mw-page-title-main">B53 nuclear bomb</span> American high-yield nuclear gravity bomb

The Mk/B53 was a high-yield bunker buster thermonuclear weapon developed by the United States during the Cold War. Deployed on Strategic Air Command bombers, the B53, with a yield of 9 megatons, was the most powerful weapon in the U.S. nuclear arsenal after the last B41 nuclear bombs were retired in 1976.

This article explains terms used for the British Armed Forces' ordnance (weapons) and ammunition. The terms may have different meanings depending on its usage in another country's military.

<span class="mw-page-title-main">Gun-type fission weapon</span> Fission-based nuclear weapon

Gun-type fission weapons are fission-based nuclear weapons whose design assembles their fissile material into a supercritical mass by the use of the "gun" method: shooting one piece of sub-critical material into another. Although this is sometimes pictured as two sub-critical hemispheres driven together to make a supercritical sphere, typically a hollow projectile is shot onto a spike, which fills the hole in its center. Its name is a reference to the fact that it is shooting the material through an artillery barrel as if it were a projectile.

<span class="mw-page-title-main">W9 (nuclear warhead)</span> American nuclear artillery shell (1952-1957)

The W9 was an American nuclear artillery shell fired from a special 280 mm howitzer. It was produced starting in 1952 and all were retired by 1957, being superseded by the W19.

<span class="mw-page-title-main">Mark 39 nuclear bomb</span> Thermonuclear warhead

The Mark 39 nuclear bomb and W39 nuclear warhead were versions of an American thermonuclear weapon, which were in service from 1957 to 1966.

<span class="mw-page-title-main">Mark 8 nuclear bomb</span> American nuclear bomb

The Mark 8 nuclear bomb was an American nuclear bomb, designed in the late 1940s and early 1950s, which was in service from 1952 to 1957.

The Mark 10 nuclear bomb was a proposed American nuclear bomb based on the earlier Mark 8 nuclear bomb design. The Mark 10, like the Mark 8, is a Gun-type nuclear weapon, which rapidly assembles several critical masses of fissile nuclear material by firing a fissile projectile or "bullet" over a fissile "target", using a system which closely resembles a medium-sized cannon barrel and propellant.

<span class="mw-page-title-main">W33 (nuclear warhead)</span> American nuclear artillery shell

The W33 was an American nuclear artillery shell designed for use in the 8-inch (203 mm) M110 howitzer and M115 howitzer.

<span class="mw-page-title-main">5-inch/38-caliber gun</span> Deck gun

The Mark 12 5"/38 caliber gun was a United States dual-purpose naval gun, but also installed in single-purpose mounts on a handful of ships. The 38 caliber barrel was a mid-length compromise between the previous United States standard 5"/51 low-angle gun and 5"/25 anti-aircraft gun. United States naval gun terminology indicates the gun fired a projectile 5 inches (127 mm) in diameter, and the barrel was 38 calibers long. The increased barrel length provided greatly improved performance in both anti-aircraft and anti-surface roles compared to the 5"/25 gun. However, except for the barrel length and the use of semi-fixed ammunition, the 5"/38 gun was derived from the 5"/25 gun. Both weapons had power ramming, which enabled rapid fire at high angles against aircraft. The 5"/38 entered service on USS Farragut, commissioned in 1934, the first new destroyer design since the last Clemson was built in 1922. The base ring mount, which improved the effective rate of fire, entered service on USS Porter, commissioned in 1936.

Armament of the <i>Iowa</i>-class battleship Armament of WWII battleship

The Iowa-class battleships are the most heavily armed warships the United States Navy has ever put to sea, due to the continual development of their onboard weaponry. The first Iowa-class ship was laid down in June 1940; in their World War II configuration, each of the Iowa-class battleships had a main battery of 16-inch (406 mm) guns that could hit targets nearly 20 statute miles (32 km) away with a variety of artillery shells designed for anti-ship or bombardment work. The secondary battery of 5-inch (127 mm) guns could hit targets nearly 9 statute miles (14 km) away with solid projectiles or proximity fuzed shells, and was effective in an anti-aircraft role as well. Each of the four battleships carried a wide array of 20 mm and 40 mm anti-aircraft guns for defense against enemy aircraft.

<span class="mw-page-title-main">Uranium hydride bomb</span> Type of atomic bomb

The uranium hydride bomb was a variant design of the atomic bomb first suggested by Robert Oppenheimer in 1939 and advocated and tested by Edward Teller. It used deuterium, an isotope of hydrogen, as a neutron moderator in a uranium-deuterium ceramic compact. Unlike all other fission-based weapon types, the concept relies on a chain reaction of slow nuclear fission. Bomb efficiency was adversely affected by the cooling of neutrons since the latter delays the reaction, as delineated by Rob Serber in his 1992 extension of the original Los Alamos Primer.

In military munitions, a fuze is the part of the device that initiates function. In some applications, such as torpedoes, a fuze may be identified by function as the exploder. The relative complexity of even the earliest fuze designs can be seen in cutaway diagrams.

<span class="mw-page-title-main">Artillery fuze</span> Type of munition fuze used with artillery munitions

An artillery fuze or fuse is the type of munition fuze used with artillery munitions, typically projectiles fired by guns, howitzers and mortars. A fuze is a device that initiates an explosive function in a munition, most commonly causing it to detonate or release its contents, when its activation conditions are met. This action typically occurs a preset time after firing, or on physical contact with or detected proximity to the ground, a structure or other target. Fuze, a variant of fuse, is the official NATO spelling.