Massey product

Last updated
The Massey product is an algebraic generalization of the phenomenon of Borromean rings. BorromeanRings.svg
The Massey product is an algebraic generalization of the phenomenon of Borromean rings.

In algebraic topology, the Massey product is a cohomology operation of higher order introduced in ( Massey 1958 ), which generalizes the cup product. The Massey product was created by William S. Massey, an American algebraic topologist.

Contents

Massey triple product

Let be elements of the cohomology algebra of a differential graded algebra . If , the Massey product is a subset of , where .

The Massey product is defined algebraically, by lifting the elements to equivalence classes of elements of , taking the Massey products of these, and then pushing down to cohomology. This may result in a well-defined cohomology class, or may result in indeterminacy.

Define to be . The cohomology class of an element of will be denoted by . The Massey triple product of three cohomology classes is defined by

The Massey product of three cohomology classes is not an element of , but a set of elements of , possibly empty and possibly containing more than one element. If have degrees , then the Massey product has degree , with the coming from the differential .

The Massey product is nonempty if the products and are both exact, in which case all its elements are in the same element of the quotient group

So the Massey product can be regarded as a function defined on triples of classes such that the product of the first or last two is zero, taking values in the above quotient group.

More casually, if the two pairwise products and both vanish in homology (), i.e., and for some chains and , then the triple product vanishes "for two different reasons" — it is the boundary of and (since and because elements of homology are cycles). The bounding chains and have indeterminacy, which disappears when one moves to homology, and since and have the same boundary, subtracting them (the sign convention is to correctly handle the grading) gives a cocycle (the boundary of the difference vanishes), and one thus obtains a well-defined element of cohomology — this step is analogous to defining the st homotopy or homology group in terms of indeterminacy in null-homotopies/null-homologies of n-dimensional maps/chains.

Geometrically, in singular cohomology of a manifold, one can interpret the product dually in terms of bounding manifolds and intersections, following Poincaré duality: dual to cocycles are cycles, often representable as closed manifolds (without boundary), dual to product is intersection, and dual to the subtraction of the bounding products is gluing the two bounding manifolds together along the boundary, obtaining a closed manifold which represents the homology class dual of the Massey product. In reality homology classes of manifolds cannot always be represented by manifolds – a representing cycle may have singularities – but with this caveat the dual picture is correct.

Higher order Massey products

More generally, the n-fold Massey product of n elements of is defined to be the set of elements of the form

for all solutions of the equations

,

with and , where denotes .

The higher order Massey product can be thought of as the obstruction to solving the latter system of equations for all , in the sense that it contains the 0 cohomology class if and only if these equations are solvable. This n-fold Massey product is an order cohomology operation, meaning that for it to be nonempty many lower order Massey operations have to contain 0, and moreover the cohomology classes it represents all differ by terms involving lower order operations. The 2-fold Massey product is just the usual cup product and is a first order cohomology operation, and the 3-fold Massey product is the same as the triple Massey product defined above and is a secondary cohomology operation.

J. PeterMay  ( 1969 ) described a further generalization called Matric Massey products, which can be used to describe the differentials of the Eilenberg–Moore spectral sequence.

Applications

The complement of the Borromean rings has a non-trivial Massey product. BorromeanRings.svg
The complement of the Borromean rings has a non-trivial Massey product.

The complement of the Borromean rings [1] gives an example where the triple Massey product is defined and non-zero. Note the cohomology of the complement can be computed using Alexander duality. If u, v, and w are 1-cochains dual to the 3 rings, then the product of any two is a multiple of the corresponding linking number and is therefore zero, while the Massey product of all three elements is non-zero, showing that the Borromean rings are linked. The algebra reflects the geometry: the rings are pairwise unlinked, corresponding to the pairwise (2-fold) products vanishing, but are overall linked, corresponding to the 3-fold product not vanishing.

Non-trivial Brunnian links correspond to non-vanishing Massey products. Brunnian.png
Non-trivial Brunnian links correspond to non-vanishing Massey products.

More generally, n-component Brunnian links – links such that any -component sublink is unlinked, but the overall n-component link is non-trivially linked – correspond to n-fold Massey products, with the unlinking of the -component sublink corresponding to the vanishing of the -fold Massey products, and the overall n-component linking corresponding to the non-vanishing of the n-fold Massey product.

Uehara & Massey (1957) used the Massey triple product to prove that the Whitehead product satisfies the Jacobi identity.

Massey products of higher order appear when computing twisted K-theory by means of the Atiyah–Hirzebruch spectral sequence (AHSS). In particular, if H is the twist 3-class, Atiyah & Segal (2008) showed that, rationally, the higher order differentials in the AHSS acting on a class x are given by the Massey product of p copies of H with a single copy of x.

If a manifold is formal (in the sense of Dennis Sullivan), then all Massey products on the space must vanish; thus, one strategy for showing that a given manifold is not formal is to exhibit a non-trivial Massey product. Here a formal manifold is one whose rational homotopy type can be deduced ("formally") from a finite-dimensional "minimal model" of its de Rham complex. Deligne et al. (1975) showed that compact Kähler manifolds are formal.

Salvatore & Longoni (2005) use a Massey product to show that the homotopy type of the configuration space of two points in a lens space depends non-trivially on the simple homotopy type of the lens space.

See also

Related Research Articles

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

<span class="mw-page-title-main">De Rham cohomology</span> Cohomology with real coefficients computed using differential forms

In mathematics, de Rham cohomology is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes. It is a cohomology theory based on the existence of differential forms with prescribed properties.

In mathematics, a characteristic class is a way of associating to each principal bundle of X a cohomology class of X. The cohomology class measures the extent the bundle is "twisted" and whether it possesses sections. Characteristic classes are global invariants that measure the deviation of a local product structure from a global product structure. They are one of the unifying geometric concepts in algebraic topology, differential geometry, and algebraic geometry.

<span class="mw-page-title-main">Spin group</span> Double cover Lie group of the special orthogonal group

In mathematics the spin group Spin(n) is a Lie group whose underlying manifold is the double cover of the special orthogonal group SO(n) = SO(n, R), such that there exists a short exact sequence of Lie groups (when n ≠ 2)

In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.

In mathematics, the Poincaré lemma gives a sufficient condition for a closed differential form to be exact. Precisely, it states that every closed p-form on an open ball in Rn is exact for p with 1 ≤ pn. The lemma was introduced by Henri Poincaré in 1886.

In mathematics, specifically in algebraic topology, the cup product is a method of adjoining two cocycles of degree p and q to form a composite cocycle of degree p + q. This defines an associative (and distributive) graded commutative product operation in cohomology, turning the cohomology of a space X into a graded ring, H(X), called the cohomology ring. The cup product was introduced in work of J. W. Alexander, Eduard Čech and Hassler Whitney from 1935–1938, and, in full generality, by Samuel Eilenberg in 1944.

In mathematics, in particular in algebraic topology and differential geometry, the Stiefel–Whitney classes are a set of topological invariants of a real vector bundle that describe the obstructions to constructing everywhere independent sets of sections of the vector bundle. Stiefel–Whitney classes are indexed from 0 to n, where n is the rank of the vector bundle. If the Stiefel–Whitney class of index i is nonzero, then there cannot exist everywhere linearly independent sections of the vector bundle. A nonzero nth Stiefel–Whitney class indicates that every section of the bundle must vanish at some point. A nonzero first Stiefel–Whitney class indicates that the vector bundle is not orientable. For example, the first Stiefel–Whitney class of the Möbius strip, as a line bundle over the circle, is not zero, whereas the first Stiefel–Whitney class of the trivial line bundle over the circle, , is zero.

In mathematics, specifically algebraic topology, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group.

In algebraic topology, a Steenrod algebra was defined by Henri Cartan (1955) to be the algebra of stable cohomology operations for mod cohomology.

In mathematics, in particular in homological algebra, a differential graded algebra is a graded associative algebra with an added chain complex structure that respects the algebra structure.

In algebraic geometry, a Weil cohomology or Weil cohomology theory is a cohomology satisfying certain axioms concerning the interplay of algebraic cycles and cohomology groups. The name is in honor of André Weil. Any Weil cohomology theory factors uniquely through the category of Chow motives, but the category of Chow motives itself is not a Weil cohomology theory, since it is not an abelian category.

In mathematics, specifically in algebraic geometry and algebraic topology, the Lefschetz hyperplane theorem is a precise statement of certain relations between the shape of an algebraic variety and the shape of its subvarieties. More precisely, the theorem says that for a variety X embedded in projective space and a hyperplane section Y, the homology, cohomology, and homotopy groups of X determine those of Y. A result of this kind was first stated by Solomon Lefschetz for homology groups of complex algebraic varieties. Similar results have since been found for homotopy groups, in positive characteristic, and in other homology and cohomology theories.

In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : EX is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle.

In mathematics, in the field of algebraic geometry, the period mapping relates families of Kähler manifolds to families of Hodge structures.

In mathematics and specifically in topology, rational homotopy theory is a simplified version of homotopy theory for topological spaces, in which all torsion in the homotopy groups is ignored. It was founded by Dennis Sullivan (1977) and Daniel Quillen (1969). This simplification of homotopy theory makes certain calculations much easier.

This is a glossary of properties and concepts in algebraic topology in mathematics.

In mathematics, finiteness properties of a group are a collection of properties that allow the use of various algebraic and topological tools, for example group cohomology, to study the group. It is mostly of interest for the study of infinite groups.

In mathematics, an algebra such as has multiplication whose associativity is well-defined on the nose. This means for any real numbers we have

References

  1. Massey, William S. (1998-05-01). "Higher order linking numbers" (PDF). Journal of Knot Theory and Its Ramifications . 07 (3): 393–414. doi:10.1142/S0218216598000206. ISSN   0218-2165. Archived from the original on 2 Feb 2021.