Metal matrix composite

Last updated

In materials science, a metal matrix composite (MMC) is a composite material with fibers or particles dispersed in a metallic matrix, such as copper, aluminum, or steel. The secondary phase is typically a ceramic (such as alumina or silicon carbide) or another metal (such as steel [1] ). They are typically classified according to the type of reinforcement: short discontinuous fibers (whiskers), continuous fibers, or particulates. There is some overlap between MMCs and cermets, with the latter typically consisting of less than 20% metal by volume. When at least three materials are present, it is called a hybrid composite. MMCs can have much higher strength-to-weight ratios, [2] stiffness, and ductility than traditional materials, so they are often used in demanding applications. MMCs typically have lower thermal and electrical conductivity and poor resistance to radiation[ citation needed ], limiting their use in the very harshest environments.

Contents

Composition

MMCs are made by dispersing a reinforcing material into a metal matrix. The reinforcement surface can be coated to prevent a chemical reaction with the matrix. For example, carbon fibers are commonly used in aluminium matrix to synthesize composites showing low density and high strength. However, carbon reacts with aluminium to generate a brittle and water-soluble compound Al4C3 on the surface of the fiber. To prevent this reaction, the carbon fibers are coated with nickel or titanium boride.

Matrix

The matrix is the monolithic material into which the reinforcement is embedded, and is completely continuous. This means that there is a path through the matrix to any point in the material, unlike two materials sandwiched together. In structural applications, the matrix is usually a lighter metal such as aluminum, magnesium, or titanium, and provides a complete support for the reinforcement. In high-temperature applications, cobalt and cobalt–nickel alloy matrices are common.

Reinforcement

The reinforcement material is embedded into a matrix. The reinforcement does not always serve a purely structural task (reinforcing the compound), but is also used to change physical properties such as wear resistance, friction coefficient, or thermal conductivity. The reinforcement can be either continuous or discontinuous. Discontinuous MMCs can be isotropic and can be worked with standard metalworking techniques, such as extrusion, forging, or rolling. In addition, they may be machined using conventional techniques, but commonly would need the use of polycrystalline diamond tooling (PCD).

Continuous reinforcement uses monofilament wires or fibers such as carbon fiber or silicon carbide. Because the fibers are embedded into the matrix in a certain direction, the result is an anisotropic structure in which the alignment of the material affects its strength. One of the first MMCs used boron filament as reinforcement. Discontinuous reinforcement uses "whiskers", short fibers, or particles. The most common reinforcing materials in this category are alumina and silicon carbide. [3]

Manufacturing and forming methods

MMC manufacturing can be broken into three types—solid, liquid, and vapor.

Solid state methods

Liquid state methods

Semi-solid state methods

Vapor deposition

In-situ fabrication technique

Residual stress

MMCs are fabricated at elevated temperatures, which is an essential condition for diffusion bonding of the fiber/matrix interface. Later on, when they are cooled down to the ambient temperature, residual stresses (RS) are generated in the composite due to the mismatch between the coefficients of the metal matrix and fiber. The manufacturing RS significantly influence the mechanical behavior of the MMCs in all loading conditions. In some cases, thermal RS are high enough to initiate plastic deformation within the matrix during the manufacturing process. [8]

Effect on Mechanical Properties

The addition of ceramic particles in general increases the strength of the material while having a tradeoff on material ductility. For example, a Al-Al2O3 composite can increase the yield strength of cast Al 6061 alloys from 105 to 120 MPa and increase the young’s modulus from 70 to 95 GPa. [9] However, the composite had negative effects on the ductility decreasing it from 10% to 2%. Ultimately, the increase in elastic modulus is significant because the metals get the benefit of the higher specific stiffness of ceramics while retaining some ductility. [10] [11] Metal-matrix composites can also significantly increase the wear resistance and hardness of aluminum alloys. Al2O3 particles were found to significantly increase the wear resistance of an Al-Si alloy, and SiO2 particles increased the hardness of a Al-Mg alloy significantly. [12] [13] The application of this is in light, wear-resistant alloys for wear components such as piston liners in automobile engines. Current aluminum alloys are soft and often require hard, heavy cast iron liners which reduces the benefits of the lightweight aluminum engines.

Fracture toughness of the composites is typically dominated by the metal phases; however, it can also be dominated by the ceramic phase or delamination depending on the material system. [14] For example the Cu/Al2O3 system has a high thermal expansion mismatch causing localized stresses encouraging crack propagation in the form of delamination. This significantly inhibits its fracture toughness compared to other compositions. In an Al/Al2O3 co-continuous system the crack propagated through the ceramic phase and was deflected upon reaching interfaces with the metallic phases. As a result, more energy was needed to deflect the crack around the phases and the composite was significantly toughened. Overall, fracture toughness is largely dependent on MMC composition due to thermal mismatch and crack modes but can toughen composites with low thermal mismatch.

MMCs strengthen materials against plasticity for a variety of reasons. The first is direct load transfer to the stronger ceramic particles. [15] The second is due to the difference in plastic deformation of the two components. This causes a dislocation to become pinned on the stronger particles and bow around them to continue moving. Dislocations typically drive plastic deformation due to the lower energy to move them rather than moving an entire plane of atoms. Therefore, pinning them causes a large increase in the energy and stress required for plastic deformation (see Precipitation hardening). The final mechanism is caused by the stress from thermal and coherency mismatch. [16] This creates a stress field which traps dislocations creating a pileup further inhibiting plastic deformation.

Applications

MMCs are nearly always more expensive than the more conventional materials they are replacing. As a result, they are found where improved properties and performance can justify the added cost. Today these applications are found most often in aircraft components, space systems and high-end or "boutique" sports equipment. The scope of applications will certainly increase as manufacturing costs are reduced.

In comparison with conventional polymer matrix composites, MMCs are resistant to fire, can operate in wider range of temperatures, do not absorb moisture, have better electrical and thermal conductivity, are resistant to radiation damage, and do not display outgassing. On the other hand, MMCs tend to be more expensive, the fiber-reinforced materials may be difficult to fabricate, and the available experience in use is limited.

See also

Related Research Articles

A cermet is a composite material composed of ceramic and metal materials.

<span class="mw-page-title-main">Refractory</span> Materials resistant to decomposition under high temperatures

In materials science, a refractory is a material that is resistant to decomposition by heat or chemical attack that retains its strength and rigidity at high temperatures. They are inorganic, non-metallic compounds that may be porous or non-porous, and their crystallinity varies widely: they may be crystalline, polycrystalline, amorphous, or composite. They are typically composed of oxides, carbides or nitrides of the following elements: silicon, aluminium, magnesium, calcium, boron, chromium and zirconium. Many refractories are ceramics, but some such as graphite are not, and some ceramics such as clay pottery are not considered refractory. Refractories are distinguished from the refractory metals, which are elemental metals and their alloys that have high melting temperatures.

<span class="mw-page-title-main">Tantalum carbide</span> Chemical compound

Tantalum carbides (TaC) form a family of binary chemical compounds of tantalum and carbon with the empirical formula TaCx, where x usually varies between 0.4 and 1. They are extremely hard, brittle, refractory ceramic materials with metallic electrical conductivity. They appear as brown-gray powders, which are usually processed by sintering.

<span class="mw-page-title-main">Ceramic engineering</span> Science and technology of creating objects from inorganic, non-metallic materials

Ceramic engineering is the science and technology of creating objects from inorganic, non-metallic materials. This is done either by the action of heat, or at lower temperatures using precipitation reactions from high-purity chemical solutions. The term includes the purification of raw materials, the study and production of the chemical compounds concerned, their formation into components and the study of their structure, composition and properties.

Aluminium carbide, chemical formula Al4C3, is a carbide of aluminium. It has the appearance of pale yellow to brown crystals. It is stable up to 1400 °C. It decomposes in water with the production of methane.

<span class="mw-page-title-main">Nanocomposite</span> Solid material with nano-scale structure

Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material.

<span class="mw-page-title-main">Thermal barrier coating</span> Form of exhaust heat management

Thermal barrier coatings (TBCs) are advanced materials systems usually applied to metallic surfaces on parts operating at elevated temperatures, such as gas turbine combustors and turbines, and in automotive exhaust heat management. These 100 μm to 2 mm thick coatings of thermally insulating materials serve to insulate components from large and prolonged heat loads and can sustain an appreciable temperature difference between the load-bearing alloys and the coating surface. In doing so, these coatings can allow for higher operating temperatures while limiting the thermal exposure of structural components, extending part life by reducing oxidation and thermal fatigue. In conjunction with active film cooling, TBCs permit working fluid temperatures higher than the melting point of the metal airfoil in some turbine applications. Due to increasing demand for more efficient engines running at higher temperatures with better durability/lifetime and thinner coatings to reduce parasitic mass for rotating/moving components, there is significant motivation to develop new and advanced TBCs. The material requirements of TBCs are similar to those of heat shields, although in the latter application emissivity tends to be of greater importance.

<span class="mw-page-title-main">Solid</span> State of matter

Solid is one of the four fundamental states of matter along with liquid, gas, and plasma. The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structural rigidity and resistance to a force applied to the surface. Unlike a liquid, a solid object does not flow to take on the shape of its container, nor does it expand to fill the entire available volume like a gas. The atoms in a solid are bound to each other, either in a regular geometric lattice, or irregularly. Solids cannot be compressed with little pressure whereas gases can be compressed with little pressure because the molecules in a gas are loosely packed.

<span class="mw-page-title-main">Ceramic matrix composite</span> Composite material consisting of ceramic fibers in a ceramic matrix

In materials science ceramic matrix composites (CMCs) are a subgroup of composite materials and a subgroup of ceramics. They consist of ceramic fibers embedded in a ceramic matrix. The fibers and the matrix both can consist of any ceramic material, including carbon and carbon fibers.

Dymalloy is a metal matrix composite of 20% copper and 80% silver alloy matrix with type I diamond. It has a very high thermal conductivity of 420 W/(m·K), and its thermal expansion can be adjusted to match other materials, e.g., silicon and gallium arsenide chips. It is chiefly used in microelectronics as a substrate for high-power and high-density multi-chip modules, where it aids with removing waste heat.

AlSiC, pronounced "alsick", is a metal matrix composite consisting of aluminium matrix with silicon carbide particles. It has high thermal conductivity, and its thermal expansion can be adjusted to match other materials, e.g. silicon and gallium arsenide chips and various ceramics. It is chiefly used in microelectronics as substrate for power semiconductor devices and high density multi-chip modules, where it aids with removal of waste heat.

E-Material, also called E Material, is a metal matrix composite consisting of beryllium matrix with beryllium oxide particles. It has high thermal conductivity, and its thermal expansion can be adjusted to match other materials, e.g. silicon and gallium arsenide chips and various ceramics. It is chiefly used in microelectronics as substrate for power semiconductor devices and high density multi-chip modules, where it aids with removal of waste heat. E-materials have low weight and high strength, making them especially suitable for aerospace technology. Their high elastic modulus is favorable for absorbing vibrations and lowering material fatigue of attached modules and wire bonds.

An inclusion is a solid particle in liquid aluminium alloy. It is usually non-metallic and can be of different nature depending on its source.

<span class="mw-page-title-main">Carbon nanotube metal matrix composite</span>

Carbon nanotube metal matrix composites (CNT-MMC) are an emerging class of new materials that mix carbon nanotubes into metals and metal alloys to take advantage of the high tensile strength and electrical conductivity of carbon nanotube materials.

Ultra-high-temperature ceramics (UHTCs) are a type of refractory ceramics that can withstand extremely high temperatures without degrading, often above 2,000 °C. They also often have high thermal conductivities and are highly resistant to thermal shock, meaning they can withstand sudden and extreme changes in temperature without cracking or breaking. Chemically, they are usually borides, carbides, nitrides, and oxides of early transition metals.

SiC–SiC matrix composite is a particular type of ceramic matrix composite (CMC) which have been accumulating interest mainly as high temperature materials for use in applications such as gas turbines, as an alternative to metallic alloys. CMCs are generally a system of materials that are made up of ceramic fibers or particles that lie in a ceramic matrix phase. In this case, a SiC/SiC composite is made by having a SiC matrix phase and a fiber phase incorporated together by different processing methods. Outstanding properties of SiC/SiC composites include high thermal, mechanical, and chemical stability while also providing high strength to weight ratio.

<span class="mw-page-title-main">Cymat Technologies</span>

Cymat Technologies is an innovative materials technology company based out of Mississauga, Ontario, Canada, and one of the world leaders in the production of stabilized aluminum foam.

Al-Ca composite is a high-conductivity, high-strength, lightweight composite consisting of sub-micron-diameter pure calcium metal filaments embedded inside a pure aluminium metal matrix. The material is still in the development phase, but it has potential use as an overhead high-voltage power transmission conductor. It could also be used wherever an exceptionally light, high-strength conductor is needed. Its physical properties make it especially well-suited for DC transmission. Compared with conventional conductors such as aluminium-conductor steel-reinforced cable (ACSR), all aluminium alloy conductors (AAAC), aluminium conductor alloy reinforced (ACAR), aluminium conductor composite reinforced ACCR and ACCC conductor that conduct alternating current well and DC current somewhat less well, Al-Ca conductor is essentially a single uniform material with high DC conductivity, allowing the core strands and the outer strands of a conductor cable to all be the same wire type. This conductor is inherently strong so that there is no need for a strong core to support its own weight as is done in conventional conductors. This eliminates the "bird caging", spooling, and thermal fatigue problems caused by thermal expansion coefficient mismatch between the core and outer strands. The Al-Ca phase interfaces strengthen the composite substantially, but do not have a noticeable effect on restricting the mean free path of electrons, which gives the composite both high strength and high conductivity, a combination that is normally difficult to achieve with both pure metals and alloys. The high strength and light weight could reduce the number of towers needed per kilometer for long distance transmission lines. Since towers and their foundations often account for 50% of a powerline's construction cost, building fewer towers would save a substantial fraction of total construction costs. The high strength also could increase transmission reliability in wind/ice loading situations. The high conductivity has the potential to reduce Ohmic losses.

In materials science, toughening refers to the process of making a material more resistant to the propagation of cracks. When a crack propagates, the associated irreversible work in different materials classes is different. Thus, the most effective toughening mechanisms differ among different materials classes. The crack tip plasticity is important in toughening of metals and long-chain polymers. Ceramics have limited crack tip plasticity and primarily rely on different toughening mechanisms.

Silicon carbide fibers are fibers ranging from 5 to 150 micrometres in diameter and composed primarily of silicon carbide molecules. Depending on manufacturing process, they may have some excess silicon or carbon, or have a small amount of oxygen. Relative to organic fibers and some ceramic fibers, silicon carbide fibers have high stiffness, high tensile strength, low weight, high chemical resistance, high temperature tolerance and low thermal expansion. (refs) These properties have made silicon carbide fiber the choice for hot section components in the next generation of gas turbines, e.g. the LEAP engine from GE.

References

  1. Gopi Krishna, M.; Praveen Kumar, K.; Naga Swapna, M.; Babu Rao, J.; Bhargava, N.R.M.R. (2018). "Metal-metal Composites-An Innovative Way For Multiple Strengthening". Materials Today: Proceedings. 4 (8): 8085–8095. doi:10.1016/j.matpr.2017.07.148. ISSN   2214-7853.
  2. Dieter, George E. (1986). Mechanical metallurgy (3rd ed.). New York: McGraw-Hill. pp. 220–226. ISBN   0-07-016893-8. OCLC   12418968.
  3. Materials science and Engineering, an introduction. William D. Callister Jr, 7th Ed, Wiley and sons publishing
  4. Wu, Yufeng; Gap; Kim, Yong (2011). "Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing". Journal of Materials Processing Technology. 211 (8): 1341–1347. doi:10.1016/j.jmatprotec.2011.03.007.
  5. Wu, Yufeng; Yong Kim, Gap; et al. (2010). "Fabrication of Al6061 composite with high SiC particle loading by semi-solid powder processing". Acta Materialia. 58 (13): 4398–4405. doi:10.1016/j.jmatprotec.2011.03.007.
  6. Wu, Yufeng; Yong Kim, Gap; et al. (2015). "Compaction behavior of Al6061 and SiC binary powder mixture in the mushy state". Journal of Materials Processing Technology. 216: 484–491. doi:10.1016/j.jmatprotec.2014.10.003.
  7. University of Virginia's Directed Vapor Deposition (DVD) technology
  8. Aghdam, M. M.; Morsali, S. R. (2014-01-01). Residual Stresses in Composite Materials. Woodhead Publishing. pp. 233–255. ISBN   9780857092700.
  9. Park, B. G.; Crosky, A. G.; Hellier, A. K. (2001-05-01). "Material characterisation and mechanical properties of Al2O3-Al metal matrix composites". Journal of Materials Science. 36 (10): 2417–2426. doi:10.1023/A:1017921813503. ISSN   1573-4803.
  10. Suh, Jin-Yoo; Lee, Young-Su; Shim, Jae-Hyeok; Park, Hoon Mo (January 2012). "Prediction of elastic properties of precipitation-hardened aluminum cast alloys". Computational Materials Science. 51 (1): 365–371. doi:10.1016/j.commatsci.2011.07.061. ISSN   0927-0256.
  11. Ashby, Mike (2005). Materials Selection in Mechanical Design (3rd ed.). Butterworth-Heinemann: Amsterdam.
  12. Megahed, M.; Saber, D.; Agwa, M. A. (2019-10-01). "Modeling of Wear Behavior of Al–Si/Al2O3 Metal Matrix Composites". Physics of Metals and Metallography. 120 (10): 981–988. doi:10.1134/S0031918X19100089. ISSN   1555-6190.
  13. Bhatt, J.; Balachander, N.; Shekher, S.; Karthikeyan, R.; Peshwe, D.R.; Murty, B.S. (September 2012). "Synthesis of nanostructured Al–Mg–SiO2 metal matrix composites using high-energy ball milling and spark plasma sintering". Journal of Alloys and Compounds. 536: S35–S40. doi:10.1016/j.jallcom.2011.12.062. ISSN   0925-8388.
  14. Agrawal, Parul; Sun, C.T. (July 2004). "Fracture in metal–ceramic composites". Composites Science and Technology. 64 (9): 1167–1178. doi:10.1016/j.compscitech.2003.09.026. ISSN   0266-3538.
  15. Chawla, N.; Shen, Y.-L. (June 2001). "Mechanical Behavior of Particle Reinforced Metal Matrix Composites". Advanced Engineering Materials. 3 (6): 357–370. doi:10.1002/1527-2648(200106)3:6<357::AID-ADEM357>3.0.CO;2-I. ISSN   1438-1656.
  16. Khraishi, Tariq A.; Yan, Lincan; Shen, Yu-Lin (June 2004). "Dynamic simulations of the interaction between dislocations and dilute particle concentrations in metal–matrix composites (MMCs)". International Journal of Plasticity. 20 (6): 1039–1057. doi:10.1016/j.ijplas.2003.10.003. ISSN   0749-6419.
  17. Aluminium matrix composite (AMC) inserts for reinforced brake calipers (Archived)
  18. Industry Solutions - Metal Matrix Composites - High performance, high strength, metal matrix composite material (Archived)
  19. Ratti, A.; R. Gough; M. Hoff; R. Keller; K. Kennedy; R MacGill; J. Staples (1999). "The SNS RFQ prototype module" (PDF). Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366). Vol. 2. pp. 884–886. Bibcode:1999pac..conf..884R. doi:10.1109/PAC.1999.795388. ISBN   978-0-7803-5573-6. S2CID   110540693. Archived from the original (PDF) on 2010-03-26. Retrieved 2009-03-09.
  20. Mochizuki, T.; Y. Sakurai; D. Shu; T. M. Kuzay; H. Kitamura (1998). "Design of Compact Absorbers for High-Heat-Load X-ray Undulator Beamlines at SPring-8" (PDF). Journal of Synchrotron Radiation. 5 (4): 1199–1201. doi:10.1107/S0909049598000387. PMID   16687820. Archived (PDF) from the original on 2011-07-26.