Minisuperspace

Last updated

The minisuperspace in physics, especially in theories of quantum gravity, is an approximation of the otherwise infinite-dimensional phase space of a field theory. The phase space is reduced by considering the largest wavelength modes to be of the order of the size of the universe when studying cosmological models and removing all larger modes. The validity of this approximation holds as long as the adiabatic approximation holds.

An example would be to only consider the scale factor and Hubble constant for a Friedman–Robertson–Walker model in minisuperspace model [1] [2] [3] the small true vacuum bubble which is nearly spherical with one single parameter of the scalar factor a is described as minisuperspace. It plays a significant role in the explanation of the origin of universe as a bubble in quantum cosmological theory. [4]

Related Research Articles

Doubly special relativity (DSR) – also called deformed special relativity or, by some, extra-special relativity – is a modified theory of special relativity in which there is not only an observer-independent maximum velocity, but also, an observer-independent maximum energy scale and/or a minimum length scale. This contrasts with other Lorentz-violating theories, such as the Standard-Model Extension, where Lorentz invariance is instead broken by the presence of a preferred frame. The main motivation for this theory is that the Planck energy should be the scale where as yet unknown quantum gravity effects become important and, due to invariance of physical laws, this scale should remain fixed in all inertial frames.

The Big Bounce is a hypothesized cosmological model for the origin of the known universe. It was originally suggested as a phase of the cyclic model or oscillatory universe interpretation of the Big Bang, where the first cosmological event was the result of the collapse of a previous universe. It receded from serious consideration in the early 1980s after inflation theory emerged as a solution to the horizon problem, which had arisen from advances in observations revealing the large-scale structure of the universe. In the early 2000s, inflation was found by some theorists to be problematic and unfalsifiable in that its various parameters could be adjusted to fit any observations, so that the properties of the observable universe are a matter of chance. Alternative pictures including a Big Bounce may provide a predictive and falsifiable possible solution to the horizon problem, and are under active investigation as of 2017.

A gravastar is an object hypothesized in astrophysics by Pawel O. Mazur and Emil Mottola as an alternative to the black hole theory. It has usual black hole metric outside of the horizon, but de Sitter metric inside. On the horizon there is a thin shell of matter. The term "gravastar" is a portmanteau of the words "gravitational vacuum star".

In particle physics, the hypothetical dilaton particle is a particle of a scalar field that appears in theories with extra dimensions when the volume of the compactified dimensions varies. It appears as a radion in Kaluza–Klein theory's compactifications of extra dimensions. In Brans–Dicke theory of gravity, Newton's constant is not presumed to be constant but instead 1/G is replaced by a scalar field and the associated particle is the dilaton.

The term cosmography has two distinct meanings: traditionally it has been the protoscience of mapping the general features of the cosmos, heaven and Earth; more recently, it has been used to describe the ongoing effort to determine the large-scale features of the observable universe.

In theoretical physics, the Einstein–Cartan theory, also known as the Einstein–Cartan–Sciama–Kibble theory, is a classical theory of gravitation similar to general relativity. The theory was first proposed by Élie Cartan in 1922. Einstein–Cartan theory is the simplest Poincaré gauge theory.

The Pioneer anomaly, or Pioneer effect, was the observed deviation from predicted accelerations of the Pioneer 10 and Pioneer 11 spacecraft after they passed about 20 astronomical units (3×109 km; 2×109 mi) on their trajectories out of the Solar System. The apparent anomaly was a matter of much interest for many years but has been subsequently explained by anisotropic radiation pressure caused by the spacecraft's heat loss.

<span class="mw-page-title-main">Quantum field theory in curved spacetime</span> Extension of quantum field theory to curved spacetime

In theoretical physics, quantum field theory in curved spacetime (QFTCS) is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory treats spacetime as a fixed, classical background, while giving a quantum-mechanical description of the matter and energy propagating through that spacetime. A general prediction of this theory is that particles can be created by time-dependent gravitational fields, or by time-independent gravitational fields that contain horizons. The most famous example of the latter is the phenomenon of Hawking radiation emitted by black holes.

Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena governed by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.

The BTZ black hole, named after Máximo Bañados, Claudio Teitelboim, and Jorge Zanelli, is a black hole solution for (2+1)-dimensional topological gravity with a negative cosmological constant.

In mathematical physics, de Sitter invariant special relativity is the speculative idea that the fundamental symmetry group of spacetime is the indefinite orthogonal group SO(4,1), that of de Sitter space. In the standard theory of general relativity, de Sitter space is a highly symmetrical special vacuum solution, which requires a cosmological constant or the stress–energy of a constant scalar field to sustain.

<span class="mw-page-title-main">Gravitomagnetic clock effect</span>

In physics, the gravitomagnetic clock effect is a deviation from Kepler's third law that, according to the weak-field and slow-motion approximation of general relativity, will be suffered by a particle in orbit around a (slowly) spinning body, such as a typical planet or star.

<span class="mw-page-title-main">Group field theory</span> Quantum field theory with a Lie group base manifold

Group field theory (GFT) is a quantum field theory in which the base manifold is taken to be a Lie group. It is closely related to background independent quantum gravity approaches such as loop quantum gravity, the spin foam formalism and causal dynamical triangulation. It can be shown that its perturbative expansion can be interpreted as spin foams and simplicial pseudo-manifolds. Thus, its partition function defines a non-perturbative sum over all simplicial topologies and geometries, giving a path integral formulation of quantum spacetime.

<span class="mw-page-title-main">Relativistic images</span> Images of gravitational lensing

Relativistic images are images of gravitational lensing which result due to light deflections by angles .

<span class="mw-page-title-main">Scalar field dark matter</span> Classical, minimally coupled, scalar field postulated to account for the inferred dark matter

In astrophysics and cosmology scalar field dark matter is a classical, minimally coupled, scalar field postulated to account for the inferred dark matter.

José Acacio de Barros is a Brazilian-American physicist and philosopher with contributions to the foundations of quantum mechanics, quantum cosmology, and quantum cognition. Dr. de Barros received his PhD in Physics from the Centro Brasileiro de Pesquisas Fisicas (CBPF) in 1991 under the supervision of Francisco Antonio Doria and Antonio Fernandes da Fonseca Teixeira. Since 2007 he has been in the Liberal Studies faculty of San Francisco State University. Before going to San Francisco, he was an associate professor of physics at the Federal University at Juiz de Fora, Brazil, and he was a visiting associate professor at the Center for the Study of Language and Information at Stanford University, and has also held visiting positions at the Centro Brasileiro de Pesquisas Fisicas. Dr. de Barros has been a long-term collaborator of Philosopher Patrick Suppes, with whom he published extensively on the foundations of quantum mechanics and joint probabilities. Among his most influential work is his joint research with Nelson Pinto-Neto, in which Bohm's interpretation of quantum mechanics was applied to quantum cosmology, paving the way for bouncing models using realistic interpretation of quantum mechanics. His recent work attempts to give a neurophysiological foundation to quantum-like effects in psychology. He is also among the main proponents, in collaboration with Gary Oas, of the use of negative probabilities to understand quantum systems.

It was customary to represent black hole horizons via stationary solutions of field equations, i.e., solutions which admit a time-translational Killing vector field everywhere, not just in a small neighborhood of the black hole. While this simple idealization was natural as a starting point, it is overly restrictive. Physically, it should be sufficient to impose boundary conditions at the horizon which ensure only that the black hole itself is isolated. That is, it should suffice to demand only that the intrinsic geometry of the horizon be time independent, whereas the geometry outside may be dynamical and admit gravitational and other radiation.

In theoretical physics, the problem of time is a conceptual conflict between general relativity and quantum mechanics in that quantum mechanics regards the flow of time as universal and absolute, whereas general relativity regards the flow of time as malleable and relative. This problem raises the question of what time really is in a physical sense and whether it is truly a real, distinct phenomenon. It also involves the related question of why time seems to flow in a single direction, despite the fact that no known physical laws at the microscopic level seem to require a single direction. For macroscopic systems the directionality of time is directly linked to first principles such as the second law of thermodynamics.

Dynamical dimensional reduction or spontaneous dimensional reduction is the apparent reduction in the number of spacetime dimensions as a function of the distance scale, or conversely the energy scale, with which spacetime is probed. At least within the current level of experimental precision, our universe has three dimensions of space and one of time. However, the idea that the number of dimensions may increase at extremely small length scales was first proposed more than a century ago, and is now fairly commonplace in theoretical physics. Contrary to this, a number of recent results in quantum gravity suggest the opposite behavior, a dynamical reduction of the number of spacetime dimensions at small length scales.

Jennie Harriet Traschen is an American physicist and cosmologist whose research concerns the structure of the early universe, inflation, black holes and black hole thermodynamics, and quantum gravity. She is a professor of physics at the University of Massachusetts Amherst.

References

  1. Pinto-Neto, N.; Fabris, J. C. (2013-06-12). "Quantum cosmology from the de Broglie–Bohm perspective". Classical and Quantum Gravity. IOP Publishing. 30 (14): 143001. arXiv: 1306.0820 . Bibcode:2013CQGra..30n3001P. doi:10.1088/0264-9381/30/14/143001. ISSN   0264-9381. S2CID   119291842.
  2. Pinto-Neto, N.; Falciano, F. T.; Pereira, Roberto; Santini, E. Sergio (2012-09-05). "Wheeler-DeWitt quantization can solve the singularity problem". Physical Review D. 86 (6): 063504. arXiv: 1206.4021 . Bibcode:2012PhRvD..86f3504P. doi:10.1103/physrevd.86.063504. ISSN   1550-7998. S2CID   118490295.
  3. Kim, Sang Pyo (1997). "Quantum potential and cosmological singularities". Physics Letters A. Elsevier BV. 236 (1–2): 11–15. arXiv: gr-qc/9703065 . Bibcode:1997PhLA..236...11K. doi:10.1016/s0375-9601(97)00744-5. ISSN   0375-9601. S2CID   12447826.
  4. Vilenkin, Alexander (1994-08-15). "Approaches to quantum cosmology". Physical Review D. 50 (4): 2581–2594. arXiv: gr-qc/9403010 . Bibcode:1994PhRvD..50.2581V. doi:10.1103/physrevd.50.2581. ISSN   0556-2821. PMID   10017889. S2CID   32646437.