NA62 experiment

Last updated
Super Proton Synchrotron
(SPS)
LHC.svg
Key SPS Experiments
UA1 Underground Area 1
UA2 Underground Area 2
NA31 NA31 Experiment
NA32 Investigation of Charm Production in Hadronic Interactions Using High-Resolution Silicon Detectors
COMPASS Common Muon and Proton Apparatus for Structure and Spectroscopy
SHINE SPS Heavy Ion and Neutrino Experiment
NA62 NA62 Experiment
SPS preaccelerators
p and Pb Linear accelerators for protons (Linac 2) and Lead (Linac 3)
(not marked) Proton Synchrotron Booster
PS Proton Synchrotron
NA62 experiment hall NA62 experiment.jpg
NA62 experiment hall

The NA62 experiment (known as P-326 at the stage of the proposal) is a fixed-target particle physics experiment in the North Area of the SPS accelerator at CERN. The experiment was approved in February 2007. Data taking began in 2015, and the experiment is expected to become the first in the world to probe the decays of the charged kaon with probabilities down to 1012. The experiment's spokesperson is Cristina Lazzeroni (since January 2019). The collaboration involves 333 individuals from 30 institutions and 13 countries around the world. [1]

Contents

Goals

The experiment is designed to conduct precision tests of the Standard Model by studying rare decays of charged kaons. The principal goal, for which the design has been optimized, is the measurement of the rate of the ultra-rare decay K+  π+ + ν + ν with a precision of 10%, by detecting about 100 decay candidates with low background. This will lead to the determination of the CKM matrix element |Vtd| with a precision better than 10%. [2] This element relates very accurately to the likelihood that top quarks decay to down quarks. The Particle Data Group's 2008 Review of Particle Physics lists |Vtd| = 0.00874+0.00026
−0.00037
. [3] A broad program of studies of kaon physics is run in parallel including studies of other rare decays, searches for forbidden decays, and for new exotic particles not predicted by the standard model (for example Dark Photons).

Experimental Apparatus

In order to achieve the desired precision, the NA62 experiment requires a certain level of background rejection concerning signal strength. Namely, high-resolution timing (to support a high-rate environment), kinematic rejection (involving the cutting on the square of the missing mass of the observed particles in the decay with respect to the incident kaon vector), particle identification, hermetic vetoing of photons out to large angles and of muons within the acceptance, and redundancy of information. [4]

Due to these necessities, the NA62 experiment has constructed a detector which is approximately 270 m in length. The components of the experiment are explained briefly below, for full details see. [5]

Beam Line

The foundation of the NA62 experiment is observing the decays of kaons. In order to do this, the experiment receives two beams from the SPS,

The Primary Beam, called P42, is used for the production of the beam. The 400 GeV/c proton beam is split into three branches and strikes three targets (T2, T4, and T6). This produces beams of secondary particles which are directed through the underground target tunnel (TCC2). At the exit of T4, the beam of transmitted protons passes through apertures in two vertically-motorized beam-dump/collimator modules, TAX 1 and TAX 2 for P42, in which holes of different apertures define the angular acceptance of the beam and hence allow the flux of protons to be selected over a wide range. In order to protect the components of the apparatus, a computer surveillance program allows the currents in the principle magnets along the P42 beam line to be monitored and to close TAX2 in case of error.

A secondary beam line, K12HIKA+, is kaon beam line. This beam is designed to come from a high flux of 400GeV/c protons in the North Area High Intensity Facility. The target/beam tunnel, TCC8, and the cavern, ECN3, where the detectors of experiment NA48 have been installed, have a combined length of 270m. It is planned to reuse the existing target station, T10, (located 15m from the beginning of TCC8), and to install the secondary beam along the existing (straight) K12 beam line, of length 102m to the exit of the final collimator, which marks the beginning of the decay fiducial region and points to the NA48 detectors (notably the liquid krypton electro-magnetic calorimeter, LKR).

These beams lead to 4.5 MHz of kaon decays in the fiducial region with a ration of ~6% for decays per Hadron Flux. [6]

Cedar/KTAG

The KTAG is the 'kaon tagger', designed to identify particles within the unseparated hadron beam. This detector is a differential Cherenkov counter (CERN west-area Cedar), instrumented with a bespoke detector consisting of 8 arrays of photodetectors (KTAG). [7]

GTK for the NA62 experiment NA62 detector.jpg
GTK for the NA62 experiment

GigaTracker (GTK)

Placed immediately before the decay region of the kaons, the GTK is designed to measure the time, direction, and momentum of all the beam tracks. The GTK is a spectrometer and can provide the measurement from the incoming 75 GeV/c kaon beam. The measurements of the GTK are used for decay selections and for background reduction.

The GTK is composed of three different stations labeled GTK1, GTK2, and GTK3 based on the order in which they are found relative to the beam path. They are mounted around four achromat magnets (which are used to deflect the beam). The entire system is placed along the beam line and is inside the vacuum tank. [8]

CHANTI

This charged anti-counter detector (CHANTI) is primarily designed to veto events with inelastic interactions between beam particles and the GTK3. The detector is constructed from six planes of scintillator detectors surrounding the beam.

Straw Tracker

The kaon beam passes through the upstream region and into the decay region, a roughly 60 m long region inside a large vacuum vessel, after which the decay products are detected in the straw tracker stations. The system measures the direction and the momentum of secondary charged particles which come from the decay region. This spectrometer is made with four chambers intersected with a high aperture dipole magnet. Each of the chambers consists of multiple straw tubes positioned to offer four views to give four coordinates. Out of 7168 straws in the whole system, only one was flawed. The leaking straw was sealed and the detector operated normally during the 2015 run. [9]

Photon Veto Systems

The experiment has a photon veto system that provides hermetic coverage between 0 and 50 milliradians. This system is made up of several subsystems covering different angular ranges; the Large Angle Vetos (LAVs) cover 8.5 - 50 mrad, the Liquid Krypton Calorimeter (LKr) covering 1 - 8.5 mrad and the Small Angle Vetos (SAV) covering 0 - 1 mrad.

Large Angle Vetos (LAV)

The 12 LAV stations are constructed from four or five annular rings of lead glass scintillator detectors surrounding the decay volume. The first 11 stations are operated in the same vacuum tank as the decay volume and STRAW while the final chamber (LAV12) is positioned after the RICH and operated in air.

Small Angle Vetos (SAV), Intermediate Ring Calorimeter (IRC) and Small Angle Calorimeter (SAC)

The IRC and SAC are electromagnetic sampling calorimeters constructed from alternating layers of lead and plastic scintillators. The SAC is positioned at the very end of the experimental apparatus in line with the beam path but after the charged particles are bent away and sent into the beam dump. This means any photons traveling along the beam direction down to 0 angle can be detected.

Liquid Krypton Calorimeter (LKr)

The LKr detector is re-used from NA48 with upgraded readout systems. The active material of the calorimeter is liquid krypton. Electromagnetic showers, initiated by charged particles or photons, are detected via ionisation electrons which drift to anodes positioned inside the liquid krypton. The signals are amplified and distributed to the readout systems.

Ring Imaging Cherenkov Detector (RICH)

The RICH is designed to distinguish between pions and muons for particles of momentum between 15 and 35 GeV/c. It is constructed from a 17.5 m long vessel with diameter up to 4.2 m and filled with nitrogen gas (at about 990 mbar). As charged particles pass through the gas Cherenkov photons are emitted at a fixed angle determined by the momentum and mass of the particle and the pressure of the nitrogen gas. Photons are reflected from an array of mirrors at the downstream end of the RICH and detected in two arrays of photomultiplier tube detectors at the upstream end of the vessel.

Charged Hodoscopes (NA48-CHOD & CHOD)

The CHOD detectors are scintillator detectors which provide input to the trigger system detecting charged particles. The system is formed from the NA48-CHOD detector, re-used from the NA48 experiment and formed from 2 planes of scintillating bars arranged vertically and horizontally, and the newly constructed CHOD constructed from an array of scintillator tiles read out by Silicon photomultipliers.

Hadronic Calorimeters (MUV1 & MUV2)

The MUV1 and MUV2 are sampling hadronic calorimeters formed from alternating layers of iron and scintillators. The newly constructed MUV1 has fine transverse segmentation to separate electromagnetic and hadronic components of showers and the MUV2 is re-used from NA48.

Muon Veto Detector (MUV3)

The MUV3 is constructed from a plane of scintillator tiles, reach read out by a pair of photomultipliers, and positioned behind an 80 cm iron wall which blocks particles leaving only muons to be detected. This detector provides a fast muon veto at trigger level and is used to identify muons at analysis level.

Data

The experiment has run multiple tests to ensure that the new detector components were working properly. The first physics run with a nearly complete detector took place in 2015. NA62 collected data in 2016, 2017 and 2018 before the CERN Long Shut Down 2. Data analysis is ongoing and several results are in preparation.

As part of the experiment, several papers have been, and are in the process of being created. A list of published papers for the NA62 experiment can be found here.

Results

2016 Data

Results published: [10] .

2017 Data

Results first presented at KAON19 conference.

Forbidden Decays

(Lepton Number Violation)

Results published: [11]

Exotics

Heavy Neutral Lepton

Results published: [12]

Dark Photon

Results published: [13]

See also

Related Research Articles

<span class="mw-page-title-main">Pionium</span>

Pionium is a composite particle consisting of one
π+
and one
π
meson. It can be created, for instance, by interaction of a proton beam accelerated by a particle accelerator and a target nucleus. Pionium has a short lifetime, predicted by chiral perturbation theory to be 2.89×10−15 s. It decays mainly into two
π0
mesons, and to a smaller extent into two photons.

<span class="mw-page-title-main">Compact Muon Solenoid</span> General-purposes experiment at the Large Hadron Collider

The Compact Muon Solenoid (CMS) experiment is one of two large general-purpose particle physics detectors built on the Large Hadron Collider (LHC) at CERN in Switzerland and France. The goal of the CMS experiment is to investigate a wide range of physics, including the search for the Higgs boson, extra dimensions, and particles that could make up dark matter.

<span class="mw-page-title-main">ATLAS experiment</span> CERN LHC experiment

ATLAS is the largest general-purpose particle detector experiment at the Large Hadron Collider (LHC), a particle accelerator at CERN in Switzerland. The experiment is designed to take advantage of the unprecedented energy available at the LHC and observe phenomena that involve highly massive particles which were not observable using earlier lower-energy accelerators. ATLAS was one of the two LHC experiments involved in the discovery of the Higgs boson in July 2012. It was also designed to search for evidence of theories of particle physics beyond the Standard Model.

<span class="mw-page-title-main">Gargamelle</span> CERN Bubble chamber particle detector

Gargamelle was a heavy liquid bubble chamber detector in operation at CERN between 1970 and 1979. It was designed to detect neutrinos and antineutrinos, which were produced with a beam from the Proton Synchrotron (PS) between 1970 and 1976, before the detector was moved to the Super Proton Synchrotron (SPS). In 1979 an irreparable crack was discovered in the bubble chamber, and the detector was decommissioned. It is currently part of the "Microcosm" exhibition at CERN, open to the public.

<span class="mw-page-title-main">Jack Steinberger</span> German-American physicist, Nobel laureate (1921–2020)

Jack Steinberger was a German-born American physicist noted for his work with neutrinos, the subatomic particles considered to be elementary constituents of matter. He was a recipient of the 1988 Nobel Prize in Physics, along with Leon M. Lederman and Melvin Schwartz, for the discovery of the muon neutrino. Through his career as an experimental particle physicist, he held positions at the University of California, Berkeley, Columbia University (1950–68), and the CERN (1968–86). He was also a recipient of the United States National Medal of Science in 1988, and the Matteucci Medal from the Italian Academy of Sciences in 1990.

<span class="mw-page-title-main">UA2 experiment</span> Particle physics experiment at CERN

The Underground Area 2 (UA2) experiment was a high-energy physics experiment at the Proton-Antiproton Collider — a modification of the Super Proton Synchrotron (SPS) — at CERN. The experiment ran from 1981 until 1990, and its main objective was to discover the W and Z bosons. UA2, together with the UA1 experiment, succeeded in discovering these particles in 1983, leading to the 1984 Nobel Prize in Physics being awarded to Carlo Rubbia and Simon van der Meer. The UA2 experiment also observed the first evidence for jet production in hadron collisions in 1981, and was involved in the searches of the top quark and of supersymmetric particles. Pierre Darriulat was the spokesperson of UA2 from 1981 to 1986, followed by Luigi Di Lella from 1986 to 1990.

The ring-imaging Cherenkov, or RICH, detector is a device for identifying the type of an electrically charged subatomic particle of known momentum, that traverses a transparent refractive medium, by measurement of the presence and characteristics of the Cherenkov radiation emitted during that traversal. RICH detectors were first developed in the 1980s and are used in high energy elementary particle-, nuclear- and astro-physics experiments.

<span class="mw-page-title-main">ALICE experiment</span> Detector experiments at the Large Hadron Collider

ALICE is one of nine detector experiments at the Large Hadron Collider at CERN. The other eight are: ATLAS, CMS, TOTEM, LHCb, LHCf, MoEDAL, FASER and SND@LHC.

In particle physics, a hermetic detector is a particle detector designed to observe all possible decay products of an interaction between subatomic particles in a collider by covering as large an area around the interaction point as possible and incorporating multiple types of sub-detectors. They are typically roughly cylindrical, with different types of detectors wrapped around each other in concentric layers; each detector type specializes in particular particles so that almost any particle will be detected and identified. Such detectors are called "hermetic" because they are constructed so as the motion of particles are ceased at the boundaries of the chamber without any moving beyond due to the seals; the name "4π detector" comes from the fact that such detectors are designed to cover nearly all of the 4π steradians of solid angle around the interaction point; in terms of the standard coordinate system used in collider physics, this is equivalent to coverage of the entire range of azimuthal angle and pseudorapidity. In practice, particles with pseudorapidity above a certain threshold cannot be measured since they are too nearly parallel to the beamline and can thus pass through the detector. This limit on the pseudorapidity ranges which can be observed forms part of the acceptance of the detector ; broadly speaking, the main design objective of a hermetic detector is to maximise acceptance, i.e. to ensure that the detector is able to measure as large a phase space region as possible.

T2K is a particle physics experiment studying the oscillations of the accelerator neutrinos. The experiment is conducted in Japan by the international cooperation of about 500 physicists and engineers with over 60 research institutions from several countries from Europe, Asia and North America and it is a recognized CERN experiment (RE13). T2K collected data within its first phase of operation from 2010 till 2021. The second phase of data taking (T2K-II) is expected to start in 2023 and last until commencement of the successor of T2K – the Hyper-Kamiokande experiment in 2027.

<span class="mw-page-title-main">LHCf experiment</span>

The LHCf is a special-purpose Large Hadron Collider experiment for astroparticle physics, and one of nine detectors in the LHC accelerator at CERN. LHCf is designed to study the particles generated in the forward region of collisions, those almost directly in line with the colliding proton beams.

<span class="mw-page-title-main">COMPASS experiment</span>

The NA58 experiment, or COMPASS is a 60-metre-long fixed-target experiment at the M2 beam line of the SPS at CERN. The experimental hall is located at the CERN North Area, close to the French village of Prévessin-Moëns. The experiment is a two-staged spectrometer with numerous tracking detectors, particle identification and calorimetry. The physics results are extracted by recording and analysing the final states of the scattering processes.

The Oscillation Project with Emulsion-tRacking Apparatus (OPERA) was an instrument used in a scientific experiment for detecting tau neutrinos from muon neutrino oscillations. The experiment is a collaboration between CERN in Geneva, Switzerland, and the Laboratori Nazionali del Gran Sasso (LNGS) in Gran Sasso, Italy and uses the CERN Neutrinos to Gran Sasso (CNGS) neutrino beam.

OKA is a particle physics detector experiment at the U-70 accelerator in the Institute for High Energy Physics located in Protvino near Moscow (Russia). OKA is specialized experiment with separated charge kaons beam.

<span class="mw-page-title-main">NA31 experiment</span>

NA31 is a CERN experiment which was proposed in 1982 as a "Measurement of |η00+-|2 by the CERN-Edinburgh-Mainz-Pisa-Siegen collaboration. It took data between 1986 and 1989, using a proton beam from the SPS through the K4 neutral beam-line. Its aim was to experimentally prove direct CP-violation.

The Beijing Spectrometer III is a particle physics experiment at the Beijing Electron–Positron Collider II at the Institute of High Energy Physics (IHEP). It is designed to study the physics of charm, charmonium, and light hadron decays. It also performs studies of the tau lepton, tests of QCD, and searches for physics beyond the Standard Model. The experiment started collecting data in the summer of 2008.

<span class="mw-page-title-main">CPLEAR experiment</span>

The CPLEAR experiment used the antiproton beam of the LEAR facility – Low-Energy Antiproton Ring which operated at CERN from 1982 to 1996 – to produce neutral kaons through proton-antiproton annihilation in order to study CP, T and CPT violation in the neutral kaon system.

The Enhanced NeUtrino BEams from kaon Tagging or ENUBET is an ERC funded project that aims at producing an artificial neutrino beam in which the flavor, flux and energy of the produced neutrinos are known with unprecedented precision.

<span class="mw-page-title-main">FASER experiment</span> 2022 particle physics experiment at the Large Hadron Collider at CERN

FASER is one of the nine particle physics experiments in 2022 at the Large Hadron Collider at CERN. It is designed to both search for new light and weakly coupled elementary particles, and to detect and study the interactions of high-energy collider neutrinos. In 2023, FASER and SND@LHC reported the first observation of collider neutrinos.

<span class="mw-page-title-main">Brad Cox (physicist)</span> American physicist

Bradley Cox is an American physicist, academic and researcher. He is a Professor of Physics and the founder of the High Energy Physics Group at the University of Virginia.

References

  1. "Experiment's detail". greybook.cern.ch. Retrieved 2016-04-06.
  2. "Proposal to Measure the Rare Decay K+ → π +νν¯ at the CERN SPS" (PDF).
  3. C. Amsler; et al. (2008). "Review of Particles Physics" (PDF). Physics Letters B . 667 (1–5): 1–1340. Bibcode:2008PhLB..667....1A. doi:10.1016/j.physletb.2008.07.018. hdl: 1854/LU-685594 .
  4. "CERN-PH-NA62". na62.web.cern.ch. Retrieved 2016-04-06.
  5. Eduardo Cortina Gil; et al. (2017). "The beam and detector of the NA62 experiment at CERN". JINST . 12 (5): P05025. arXiv: 1703.08501 . Bibcode:2017JInst..12P5025C. doi:10.1088/1748-0221/12/05/P05025. S2CID   119392990.
  6. "The K+ Beam Line" (PDF). CERN.
  7. Evgueni Goudzovski; et al. (2015). "Development of the kaon tagging system for the NA62 experiment at CERN". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment . 801: 86–94. arXiv: 1509.03773 . Bibcode:2015NIMPA.801...86G. doi:10.1016/j.nima.2015.08.015. S2CID   33673530.
  8. "Gigatracker (GTK)". CERN
  9. "2015 NA62 Status Report to the CERN SPSC". CERN
  10. E. Cortina Gil; et al. (NA62 Collaboration) (2019). "First search for using the decay-in-flight technique". Physics Letters B . 791: 156–166. arXiv: 1811.08508 . doi: 10.1016/j.physletb.2019.01.067 .
  11. E. Cortina Gil; et al. (NA62 Collaboration) (2019). "Searches for lepton number violating decays". Physics Letters B . 797: 134794. arXiv: 1905.07770 . Bibcode:2019PhLB..79734794C. doi: 10.1016/j.physletb.2019.07.041 .
  12. E. Cortina Gil; et al. (NA62 Collaboration) (2018). "Search for heavy neutral lepton production in decays". Physics Letters B . 778: 137–145. arXiv: 1712.00297 . Bibcode:2018PhLB..778..137C. doi: 10.1016/j.physletb.2018.01.031 .
  13. E. Cortina Gil; et al. (NA62 Collaboration) (2019). "Search for production of an invisible dark photon in decays". Journal of High Energy Physics . 2019 (5): 182. arXiv: 1903.08767 . Bibcode:2019JHEP...05..182C. doi: 10.1007/JHEP05(2019)182 .

Further reading