NAS Award in the Neurosciences

Last updated

The NAS Award in the Neurosciences is awarded by the U.S. National Academy of Sciences "in recognition of extraordinary contributions to progress in the fields of neuroscience, including neurochemistry, neurophysiology, neuropharmacology, developmental neuroscience, neuroanatomy, and behavioral and clinical neuroscience." It was first awarded in 1988. [1]

Contents

Recipients

Source: National Academy of Sciences

For her groundbreaking insights into the functional organization of the human brain, including the discovery of neocortical subregions that differentially engage in the perception of faces, places, music and even what others think, thereby linking modularity of mind theories to neuroscience.

For her body of work that has transformed the perception of neuronal circuits as static structures well-described by connectivity diagrams, to our current understanding of microcircuits as flexible and dynamic entities that efficiently balance the needs for plasticity and stability.

For fundamental contributions to understanding the functional organization of the primate brain, including discovery of the visual functions of inferior temporal cortex, the role of the dorsal and ventral visual pathways in spatial and object processing, and anatomical descriptions of cognitive and non-cognitive memory systems.

For the elucidation of fundamental mechanisms of chemical signaling, including opiate receptors, NO signaling, and other neurotransmitter/receptor interactions.

For his seminal discoveries elucidating cellular and molecular bases for synaptic plasticity in the brain.

For the pioneering discovery that fast-acting neurotransmitters mediate their effects through allosteric regulation of the neurotransmitter protein.

For her pioneering and seminal investigations of the functioning of the temporal lobes and other brain regions in learning, memory, and speech.

For his pioneering contributions which have brought neurogenetics to maturity. Benzer's discoveries in fruit flies have identified specific genes contributing to behaviors of central importance.

For his discovery of the columnar organization of the mammalian cerebral cortex and for original studies relating behavior to function of single cells in higher cortical areas.

For development of a powerful method for determining connectivity among specific brain sites and thus establishing now-classical circuits in the limbic system.

For his discovery of the central role played by neuronal phosphoproteins in normal brain function as well as in neuropsychiatric and related disorders.

For developing techniques to measure brain blood flow and metabolism -- valuable tools in the study of brain function that have major applications in clinical medicine.

See also

Related Research Articles

<span class="mw-page-title-main">Brain</span> Organ that controls the nervous system in vertebrates and most invertebrates

A brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as vision. It is the most complex organ in a vertebrate's body. In a human, the cerebral cortex contains approximately 14–16 billion neurons, and the estimated number of neurons in the cerebellum is 55–70 billion. Each neuron is connected by synapses to several thousand other neurons. These neurons typically communicate with one another by means of long fibers called axons, which carry trains of signal pulses called action potentials to distant parts of the brain or body targeting specific recipient cells.

<span class="mw-page-title-main">Behavioral neuroscience</span> Field of study

Behavioral neuroscience, also known as biological psychology, biopsychology, or psychobiology, is the application of the principles of biology to the study of physiological, genetic, and developmental mechanisms of behavior in humans and other animals.

<span class="mw-page-title-main">Dopaminergic pathways</span> Projection neurons in the brain that synthesize and release dopamine

Dopaminergic pathways in the human brain are involved in both physiological and behavioral processes including movement, cognition, executive functions, reward, motivation, and neuroendocrine control. Each pathway is a set of projection neurons, consisting of individual dopaminergic neurons.

Cortical maps are collections (areas) of minicolumns in the brain cortex that have been identified as performing a specific information processing function.

Neuroplasticity, also known as neural plasticity, or brain plasticity, is the ability of neural networks in the brain to change through growth and reorganization. It is when the brain is rewired to function in some way that differs from how it previously functioned. These changes range from individual neuron pathways making new connections, to systematic adjustments like cortical remapping or neural oscillation. Other forms of neuroplasticity include homologous area adaptation, cross modal reassignment, map expansion, and compensatory masquerade. Examples of neuroplasticity include circuit and network changes that result from learning a new ability, information acquisition, environmental influences, practice, and psychological stress.

<span class="mw-page-title-main">Stephen Grossberg</span> American scientist (born 1939)

Stephen Grossberg is a cognitive scientist, theoretical and computational psychologist, neuroscientist, mathematician, biomedical engineer, and neuromorphic technologist. He is the Wang Professor of Cognitive and Neural Systems and a Professor Emeritus of Mathematics & Statistics, Psychological & Brain Sciences, and Biomedical Engineering at Boston University.

Mriganka Sur is the Newton Professor of Neuroscience and Director of the Simons Center for the Social Brain at the Massachusetts Institute of Technology. He is also a Visiting Faculty Member in the Department of Computer Science and Engineering at the Indian Institute of Technology Madras and N.R. Narayana Murthy Distinguished Chair in Computational Brain Research at the Centre for Computational Brain Research, IIT Madras. He was on the Life Sciences jury for the Infosys Prize in 2010 and has been serving as Jury Chair from 2018.

The Richard Lounsbery Award is given to American and French scientists, 45 years or younger, in recognition of "extraordinary scientific achievement in biology and medicine."

Denise Manahan-Vaughan is an Irish neuroscientist and neurophysiologist. She is head of the Department of Neurophysiology, dean of studies and director of the International Graduate School of Neuroscience and co-founder of the Research Department of Neuroscience of the Ruhr University Bochum. Her research focuses on elucidation of the cellular and synaptic mechanisms underlying the acquisition and long-term maintenance of associative memories. She uses a multidisciplinary approach to study how spatial experiences, sensory input, neuromodulation, or brain disease impacts on, and provide insight into, the function of the hippocampus in enabling long-term memory.

<span class="mw-page-title-main">Ann Graybiel</span> American neuroscientist

Ann Martin Graybiel is an Institute Professor and a faculty member in the Department of Brain and Cognitive Sciences at the Massachusetts Institute of Technology. She is also an investigator at the McGovern Institute for Brain Research. She is an expert on the basal ganglia and the neurophysiology of habit formation, implicit learning, and her work is relevant to Parkinson's disease, Huntington's disease, obsessive–compulsive disorder, substance abuse and other disorders that affect the basal ganglia.

Activity-dependent plasticity is a form of functional and structural neuroplasticity that arises from the use of cognitive functions and personal experience; hence, it is the biological basis for learning and the formation of new memories. Activity-dependent plasticity is a form of neuroplasticity that arises from intrinsic or endogenous activity, as opposed to forms of neuroplasticity that arise from extrinsic or exogenous factors, such as electrical brain stimulation- or drug-induced neuroplasticity. The brain's ability to remodel itself forms the basis of the brain's capacity to retain memories, improve motor function, and enhance comprehension and speech amongst other things. It is this trait to retain and form memories that is associated with neural plasticity and therefore many of the functions individuals perform on a daily basis. This plasticity occurs as a result of changes in gene expression which are triggered by signaling cascades that are activated by various signaling molecules during increased neuronal activity.

Malleability of intelligence describes the processes by which intelligence can increase or decrease over time and is not static. These changes may come as a result of genetics, pharmacological factors, psychological factors, behavior, or environmental conditions. Malleable intelligence may refer to changes in cognitive skills, memory, reasoning, or muscle memory related motor skills. In general, the majority of changes in human intelligence occur at either the onset of development, during the critical period, or during old age.

The Troland Research Awards are an annual prize given by the United States National Academy of Sciences to two researchers in recognition of psychological research on the relationship between consciousness and the physical world. The areas where these award funds are to be spent include but are not limited to areas of experimental psychology, the topics of sensation, perception, motivation, emotion, learning, memory, cognition, language, and action. The award preference is given to experimental work with a quantitative approach or experimental research seeking physiological explanations.

The Karl Spencer Lashley Award is awarded by The American Philosophical Society as a recognition of research on the integrative neuroscience of behavior. The award was established in 1957 by a gift from Dr. Karl Spencer Lashley.

Mortimer Mishkin was an American neuropsychologist, and winner of the 2009 National Medal of Science awarded in Behavior and Social Science.

Bryan Edward Kolb is a Canadian neuroscientist, neuropsychologist, researcher, author and educator. Kolb's research focuses on the organization and functions of the cerebral cortex.

Social cognitive neuroscience is the scientific study of the biological processes underpinning social cognition. Specifically, it uses the tools of neuroscience to study "the mental mechanisms that create, frame, regulate, and respond to our experience of the social world". Social cognitive neuroscience uses the epistemological foundations of cognitive neuroscience, and is closely related to social neuroscience. Social cognitive neuroscience employs human neuroimaging, typically using functional magnetic resonance imaging (fMRI). Human brain stimulation techniques such as transcranial magnetic stimulation and transcranial direct-current stimulation are also used. In nonhuman animals, direct electrophysiological recordings and electrical stimulation of single cells and neuronal populations are utilized for investigating lower-level social cognitive processes.

<span class="mw-page-title-main">Albert Galaburda</span>

Albert Mark Galaburda is a cognitive and behavioral neurologist with a special focus on the biologic bases of developmental cognitive disorders. He is the Emily Fisher Landau Professor of Neurology and Neuroscience at Harvard Medical School, the Director of the Office for Diversity, Inclusion, and Career Advancement at Beth Israel Deaconess Medical Center, Boston, and co-director of the Harvard University Interfaculty Initiative on Mind Brain and Behavior, together with psychologist Alfonso Caramazza. He is best known for his development of the Geschwind–Galaburda hypothesis, which helps explain differences in cognitive abilities on the basis of sex hormones and immunological characteristics and their relationship to lateralization of brain function, as well as for his pioneering studies on the biological foundations of developmental dyslexia. Other work includes the anatomical organization of the auditory cortex in the brains of monkeys and humans and the neuroanatomical and neurodevelopmental bases of brain laterality and asymmetry. He attended the Six-Year Liberal Arts-Medicine Program at Boston University School of Medicine, graduating with an AB-MD degree in 1971, and completed a residency in Internal Medicine and a residency in Neurology at Boston City Hospital, now Boston Medical Center. He was trained in Medicine under Norman Levinsky and in Neurology under Norman Geschwind. He has published numerous scientific articles and books in the field of cognitive neurology, with a focus on learning disabilities and attention disorders, especially in adults.

The IBRO Dargut and Milena Kemali International Prize for Research in the field of Basic and Clinical Neurosciences' is a prize awarded every two years to an outstanding researcher, under 45 years old, who made important contributions in the field of Basic and Clinical Neurosciences. The award was established in 1998.

References

  1. "NAS Award in the Neurosciences". National Academy of Sciences. Retrieved 15 August 2015.