Peano surface

Last updated
Model of the Peano surface in the Dresden collection Modell einer Peanoschen Flache -Schilling XLIX, 1-.jpg
Model of the Peano surface in the Dresden collection

In mathematics, the Peano surface is the graph of the two-variable function

Contents

It was proposed by Giuseppe Peano in 1899 as a counterexample to a conjectured criterion for the existence of maxima and minima of functions of two variables. [1] [2]

The surface was named the Peano surface (German : Peanosche Fläche) by Georg Scheffers in his 1920 book Lehrbuch der darstellenden Geometrie. [1] [3] It has also been called the Peano saddle. [4] [5]

Properties

Peano surface and its level curves for level 0 (parabolas, green and purple) Peano-flaeche-12.svg
Peano surface and its level curves for level 0 (parabolas, green and purple)

The function whose graph is the surface takes positive values between the two parabolas and , and negative values elsewhere (see diagram). At the origin, the three-dimensional point on the surface that corresponds to the intersection point of the two parabolas, the surface has a saddle point. [6] The surface itself has positive Gaussian curvature in some parts and negative curvature in others, separated by another parabola, [4] [5] implying that its Gauss map has a Whitney cusp. [5]

Intersection of the Peano surface with a vertical plane. The intersection curve has a local maximum at the origin, to the right of the image, and a global maximum on the left of the image, dipping shallowly between these two points. Peano intersection.png
Intersection of the Peano surface with a vertical plane. The intersection curve has a local maximum at the origin, to the right of the image, and a global maximum on the left of the image, dipping shallowly between these two points.

Although the surface does not have a local maximum at the origin, its intersection with any vertical plane through the origin (a plane with equation or ) is a curve that has a local maximum at the origin, [1] a property described by Earle Raymond Hedrick as "paradoxical". [7] In other words, if a point starts at the origin of the plane, and moves away from the origin along any straight line, the value of will decrease at the start of the motion. Nevertheless, is not a local maximum of the function, because moving along a parabola such as (in diagram: red) will cause the function value to increase.

The Peano surface is a quartic surface.

As a counterexample

In 1886 Joseph Alfred Serret published a textbook [8] with a proposed criteria for the extremal points of a surface given by

"the maximum or the minimum takes place when for the values of and for which and (third and fourth terms) vanish, (fifth term) has constantly the sign − , or the sign +."

Here, it is assumed that the linear terms vanish and the Taylor series of has the form where is a quadratic form like , is a cubic form with cubic terms in and , and is a quartic form with a homogeneous quartic polynomial in and . Serret proposes that if has constant sign for all points where then there is a local maximum or minimum of the surface at .

In his 1884 notes to Angelo Genocchi's Italian textbook on calculus, Calcolo differenziale e principii di calcolo integrale, Peano had already provided different correct conditions for a function to attain a local minimum or local maximum. [1] [9] In the 1899 German translation of the same textbook, he provided this surface as a counterexample to Serret's condition. At the point , Serret's conditions are met, but this point is a saddle point, not a local maximum. [1] [2] A related condition to Serret's was also criticized by Ludwig Scheeffer, who used Peano's surface as a counterexample to it in an 1890 publication, credited to Peano. [6] [10]

Models

Models of Peano's surface are included in the Göttingen Collection of Mathematical Models and Instruments at the University of Göttingen, [11] and in the mathematical model collection of TU Dresden (in two different models). [12] The Göttingen model was the first new model added to the collection after World War I, and one of the last added to the collection overall. [6]

Related Research Articles

In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.

<span class="mw-page-title-main">Asymptote</span> Limit of the tangent line at a point that tends to infinity

In analytic geometry, an asymptote of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the x or y coordinates tends to infinity. In projective geometry and related contexts, an asymptote of a curve is a line which is tangent to the curve at a point at infinity.

In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

<span class="mw-page-title-main">Parabola</span> Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

In mathematics, a quadratic equation is an equation that can be rearranged in standard form as

<span class="mw-page-title-main">Curvature</span> Mathematical measure of how much a curve or surface deviates from flatness

In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or surface is contained in a larger space, curvature can be defined extrinsically relative to the ambient space. Curvature of Riemannian manifolds of dimension at least two can be defined intrinsically without reference to a larger space.

<span class="mw-page-title-main">Paraboloid</span> Quadric surface with one axis of symmetry and no center of symmetry

In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry.

<span class="mw-page-title-main">Quadratic function</span> Polynomial function of degree two

In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before the 20th century, the distinction was unclear between a polynomial and its associated polynomial function; so "quadratic polynomial" and "quadratic function" were almost synonymous. This is still the case in many elementary courses, where both terms are often abbreviated as "quadratic".

<span class="mw-page-title-main">Commutative property</span> Property of some mathematical operations

In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a property of arithmetic, e.g. "3 + 4 = 4 + 3" or "2 × 5 = 5 × 2", the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it ; such operations are not commutative, and so are referred to as noncommutative operations. The idea that simple operations, such as the multiplication and addition of numbers, are commutative was for many years implicitly assumed. Thus, this property was not named until the 19th century, when mathematics started to become formalized. A similar property exists for binary relations; a binary relation is said to be symmetric if the relation applies regardless of the order of its operands; for example, equality is symmetric as two equal mathematical objects are equal regardless of their order.

<span class="mw-page-title-main">Maximum and minimum</span> Largest and smallest value taken by a function takes at a given point

In mathematical analysis, the maximum and minimum of a function are, respectively, the largest and smallest value taken by the function. Known generically as extremum, they may be defined either within a given range or on the entire domain of a function. Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions.

<span class="mw-page-title-main">Cantor function</span> Continuous function that is not absolutely continuous

In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero derivative almost everywhere, its value still goes from 0 to 1 as its argument reaches from 0 to 1. Thus, in one sense the function seems very much like a constant one which cannot grow, and in another, it does indeed monotonically grow.

<span class="mw-page-title-main">Saddle point</span> Critical point on a surface graph which is not a local extremum

In mathematics, a saddle point or minimax point is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero, but which is not a local extremum of the function. An example of a saddle point is when there is a critical point with a relative minimum along one axial direction and at a relative maximum along the crossing axis. However, a saddle point need not be in this form. For example, the function has a critical point at that is a saddle point since it is neither a relative maximum nor relative minimum, but it does not have a relative maximum or relative minimum in the -direction.

<span class="mw-page-title-main">Newton's method in optimization</span> Method for finding stationary points of a function

In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function F, which are solutions to the equation F (x) = 0. As such, Newton's method can be applied to the derivative f of a twice-differentiable function f to find the roots of the derivative (solutions to f ′(x) = 0), also known as the critical points of f. These solutions may be minima, maxima, or saddle points; see section "Several variables" in Critical point (mathematics) and also section "Geometric interpretation" in this article. This is relevant in optimization, which aims to find (global) minima of the function f.

<span class="mw-page-title-main">Triangulation (topology)</span>

In mathematics, triangulation describes the replacement of topological spaces by piecewise linear spaces, i.e. the choice of a homeomorphism in a suitable simplicial complex. Spaces being homeomorphic to a simplicial complex are called triangulable. Triangulation has various uses in different branches of mathematics, for instance in algebraic topology, in complex analysis or in modeling.

<span class="mw-page-title-main">Critical point (mathematics)</span> Point where the derivative of a function is zero

In mathematics, a critical point is the argument of a function where the function derivative is zero . The value of the function at a critical point is a critical value.

In mathematics, Robinson arithmetic is a finitely axiomatized fragment of first-order Peano arithmetic (PA), first set out by Raphael M. Robinson in 1950. It is usually denoted Q. Q is almost PA without the axiom schema of mathematical induction. Q is weaker than PA but it has the same language, and both theories are incomplete. Q is important and interesting because it is a finitely axiomatized fragment of PA that is recursively incompletable and essentially undecidable.

In mathematics, a variable is a symbol that represents a mathematical object. A variable may represent a number, a vector, a matrix, a function, the argument of a function, a set, or an element of a set.

In algebraic geometry, a quartic plane curve is a plane algebraic curve of the fourth degree. It can be defined by a bivariate quartic equation:

<span class="mw-page-title-main">Intersection</span> Concept in mathematics

In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their intersection is the point at which they meet. More generally, in set theory, the intersection of sets is defined to be the set of elements which belong to all of them. Unlike the Euclidean definition, this does not presume that the objects under consideration lie in a common space.

<span class="mw-page-title-main">Schwarz lantern</span> Near-cylindrical polyhedron with large area

In mathematics, the Schwarz lantern is a polyhedral approximation to a cylinder, used as a pathological example of the difficulty of defining the area of a smooth (curved) surface as the limit of the areas of polyhedra. It is formed by stacked rings of isosceles triangles, arranged within each ring in the same pattern as an antiprism. The resulting shape can be folded from paper, and is named after mathematician Hermann Schwarz and for its resemblance to a cylindrical paper lantern. It is also known as Schwarz's boot, Schwarz's polyhedron, or the Chinese lantern.

References

  1. 1 2 3 4 5 Emch, Arnold (1922). "A model for the Peano Surface". American Mathematical Monthly. 29 (10): 388–391. doi:10.1080/00029890.1922.11986180. JSTOR   2299024. MR   1520111.
  2. 1 2 Genocchi, Angelo (1899). Peano, Giuseppe (ed.). Differentialrechnung und Grundzüge der Integralrechnung (in German). B.G. Teubner. p. 332.
  3. Scheffers, Georg (1920). "427. Die Peanosche Fläche". Lehrbuch der darstellenden Geometrie (in German). Vol. II. pp. 261–263.
  4. 1 2 Krivoshapko, S. N.; Ivanov, V. N. (2015). "Saddle Surfaces". Encyclopedia of Analytical Surfaces. Springer. pp. 561–565. doi:10.1007/978-3-319-11773-7_33. See especially section "Peano Saddle", pp. 562–563.
  5. 1 2 3 Francis, George K. (1987). A Topological Picturebook. Springer-Verlag, New York. p. 88. ISBN   0-387-96426-6. MR   0880519.
  6. 1 2 3 Fischer, Gerd, ed. (2017). Mathematical Models: From the Collections of Universities and Museums – Photograph Volume and Commentary (2nd ed.). doi:10.1007/978-3-658-18865-8. ISBN   978-3-658-18864-1. See in particular the Foreword (p. xiii) for the history of the Göttingen model, Photo 122 "Penosche Fläsche / Peano Surface" (p. 119), and Chapter 7, Functions, Jürgen Leiterer (R. B. Burckel, trans.), section 1.2, "The Peano Surface (Photo 122)", pp. 202–203, for a review of its mathematics.
  7. Hedrick, E. R. (July 1907). "A peculiar example in minima of surfaces". Annals of Mathematics . Second Series. 8 (4): 172–174. doi:10.2307/1967821. JSTOR   1967821.
  8. Serret, J. A. (1886). Cours de calcul différentiel et intégral. Vol. 1 (3d ed.). Paris. p. 216 via Internet Archive.{{cite book}}: CS1 maint: location missing publisher (link)
  9. Genocchi, Angelo (1884). "Massimi e minimi delle funzioni di più variabili". In Peano, Giuseppe (ed.). Calcolo differenziale e principii di calcolo integrale (in Italian). Fratelli Bocca. pp. 195–203.
  10. Scheeffer, Ludwig (December 1890). "Theorie der Maxima und Minima einer Function von zwei Variabeln". Mathematische Annalen (in German). 35 (4): 541–576. doi:10.1007/bf02122660. S2CID   122837827. See in particular pp. 545–546.
  11. "Peano Surface". Göttingen Collection of Mathematical Models and Instruments. University of Göttingen . Retrieved 2020-07-13.
  12. Model 39, "Peanosche Fläche, geschichtet" and model 40, "Peanosche Fläche", Mathematische Modelle, TU Dresden, retrieved 2020-07-13