Poisson algebra

Last updated

In mathematics, a Poisson algebra is an associative algebra together with a Lie bracket that also satisfies Leibniz's law; that is, the bracket is also a derivation. Poisson algebras appear naturally in Hamiltonian mechanics, and are also central in the study of quantum groups. Manifolds with a Poisson algebra structure are known as Poisson manifolds, of which the symplectic manifolds and the Poisson–Lie groups are a special case. The algebra is named in honour of Siméon Denis Poisson.

Contents

Definition

A Poisson algebra is a vector space over a field K equipped with two bilinear products, ⋅ and {, }, having the following properties:

The last property often allows a variety of different formulations of the algebra to be given, as noted in the examples below.

Examples

Poisson algebras occur in various settings.

Symplectic manifolds

The space of real-valued smooth functions over a symplectic manifold forms a Poisson algebra. On a symplectic manifold, every real-valued function H on the manifold induces a vector field XH, the Hamiltonian vector field. Then, given any two smooth functions F and G over the symplectic manifold, the Poisson bracket may be defined as:

.

This definition is consistent in part because the Poisson bracket acts as a derivation. Equivalently, one may define the bracket {,} as

where [,] is the Lie derivative. When the symplectic manifold is R2n with the standard symplectic structure, then the Poisson bracket takes on the well-known form

Similar considerations apply for Poisson manifolds, which generalize symplectic manifolds by allowing the symplectic bivector to be rank deficient.

Lie algebras

The tensor algebra of a Lie algebra has a Poisson algebra structure. A very explicit construction of this is given in the article on universal enveloping algebras.

The construction proceeds by first building the tensor algebra of the underlying vector space of the Lie algebra. The tensor algebra is simply the disjoint union (direct sum ⊕) of all tensor products of this vector space. One can then show that the Lie bracket can be consistently lifted to the entire tensor algebra: it obeys both the product rule, and the Jacobi identity of the Poisson bracket, and thus is the Poisson bracket, when lifted. The pair of products {,} and ⊗ then form a Poisson algebra. Observe that ⊗ is neither commutative nor is it anti-commutative: it is merely associative.

Thus, one has the general statement that the tensor algebra of any Lie algebra is a Poisson algebra. The universal enveloping algebra is obtained by modding out the Poisson algebra structure.

Associative algebras

If A is an associative algebra, then imposing the commutator [x,y]=xyyx turns it into a Poisson algebra (and thus, also a Lie algebra) AL. Note that the resulting AL should not be confused with the tensor algebra construction described in the previous section. If one wished, one could also apply that construction as well, but that would give a different Poisson algebra, one that would be much larger.

Vertex operator algebras

For a vertex operator algebra (V,Y, ω, 1), the space V/C2(V) is a Poisson algebra with {a, b} = a0b and ab = a−1b. For certain vertex operator algebras, these Poisson algebras are finite-dimensional.

Z2 grading

Poisson algebras can be given a Z2-grading in one of two different ways. These two result in the Poisson superalgebra and the Gerstenhaber algebra. The difference between the two is in the grading of the product itself. For the Poisson superalgebra, the grading is given by

whereas in the Gerstenhaber algebra, the bracket decreases the grading by one:

In both of these expressions denotes the grading of the element ; typically, it counts how can be decomposed into an even or odd product of generating elements. Gerstenhaber algebras conventionally occur in BRST quantization.

See also

Related Research Articles

In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.

<span class="mw-page-title-main">Symplectic group</span> Mathematical group

In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted Sp(2n, F) and Sp(n) for positive integer n and field F (usually C or R). The latter is called the compact symplectic group and is also denoted by . Many authors prefer slightly different notations, usually differing by factors of 2. The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group Sp(2n, C) is denoted Cn, and Sp(n) is the compact real form of Sp(2n, C). Note that when we refer to the (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension n.

<span class="mw-page-title-main">Differential operator</span> Typically linear operator defined in terms of differentiation of functions

In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.

<span class="mw-page-title-main">Poisson bracket</span> Operation in Hamiltonian mechanics

In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.

In mathematics, a Lie superalgebra is a generalisation of a Lie algebra to include a ‑grading. Lie superalgebras are important in theoretical physics where they are used to describe the mathematics of supersymmetry.

In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra.

In mathematics, the Heisenberg group, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form

In mathematics, an almost complex manifold is a smooth manifold equipped with a smooth linear complex structure on each tangent space. Every complex manifold is an almost complex manifold, but there are almost complex manifolds that are not complex manifolds. Almost complex structures have important applications in symplectic geometry.

In theoretical physics, the Batalin–Vilkovisky (BV) formalism was developed as a method for determining the ghost structure for Lagrangian gauge theories, such as gravity and supergravity, whose corresponding Hamiltonian formulation has constraints not related to a Lie algebra. The BV formalism, based on an action that contains both fields and "antifields", can be thought of as a vast generalization of the original BRST formalism for pure Yang–Mills theory to an arbitrary Lagrangian gauge theory. Other names for the Batalin–Vilkovisky formalism are field-antifield formalism, Lagrangian BRST formalism, or BV–BRST formalism. It should not be confused with the Batalin–Fradkin–Vilkovisky (BFV) formalism, which is the Hamiltonian counterpart.

<span class="mw-page-title-main">Canonical quantization</span> Process of converting a classical physical theory into one compatible with quantum mechanics

In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory to the greatest extent possible.

In physics, a first class constraint is a dynamical quantity in a constrained Hamiltonian system whose Poisson bracket with all the other constraints vanishes on the constraint surface in phase space. To calculate the first class constraint, one assumes that there are no second class constraints, or that they have been calculated previously, and their Dirac brackets generated.

In mathematics, a Poisson superalgebra is a Z2-graded generalization of a Poisson algebra. Specifically, a Poisson superalgebra is an (associative) superalgebra A together with a second product, a Lie superbracket

In differential geometry, a field in mathematics, a Poisson manifold is a smooth manifold endowed with a Poisson structure. The notion of Poisson manifold generalises that of symplectic manifold, which in turn generalises the phase space from Hamiltonian mechanics.

In physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below.

In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in two-dimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence.

In mathematics and physics, a Hamiltonian vector field on a symplectic manifold is a vector field defined for any energy function or Hamiltonian. Named after the physicist and mathematician Sir William Rowan Hamilton, a Hamiltonian vector field is a geometric manifestation of Hamilton's equations in classical mechanics. The integral curves of a Hamiltonian vector field represent solutions to the equations of motion in the Hamiltonian form. The diffeomorphisms of a symplectic manifold arising from the flow of a Hamiltonian vector field are known as canonical transformations in physics and (Hamiltonian) symplectomorphisms in mathematics.

In mathematics, the Moyal product is an example of a phase-space star product. It is an associative, non-commutative product, , on the functions on , equipped with its Poisson bracket. It is a special case of the -product of the "algebra of symbols" of a universal enveloping algebra.

In mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc.

In quantum mechanics, the Wigner–Weyl transform or Weyl–Wigner transform is the invertible mapping between functions in the quantum phase space formulation and Hilbert space operators in the Schrödinger picture.

In differential geometry, the Schouten–Nijenhuis bracket, also known as the Schouten bracket, is a type of graded Lie bracket defined on multivector fields on a smooth manifold extending the Lie bracket of vector fields. There are two different versions, both rather confusingly called by the same name. The most common version is defined on alternating multivector fields and makes them into a Gerstenhaber algebra, but there is also another version defined on symmetric multivector fields, which is more or less the same as the Poisson bracket on the cotangent bundle. It was invented by Jan Arnoldus Schouten and its properties were investigated by his student Albert Nijenhuis (1955). It is related to but not the same as the Nijenhuis–Richardson bracket and the Frölicher–Nijenhuis bracket.

References