Polyhydride

Last updated

A polyhydride or superhydride is a compound that contains an abnormally large amount of hydrogen. This can be described as high hydrogen stoichiometry. Examples include iron pentahydride FeH5, LiH6, and LiH7. By contrast, the more well known lithium hydride only has one hydrogen atom. [1]

Contents

Polyhydrides are only known to be stable under high pressure. [1]

Polyhydrides are important because they can form substances with a very high density of hydrogen. They may resemble the elusive metallic hydrogen, but can be made under lower pressures. One possibility is that they could be superconductors. Hydrogen sulfide under high pressures forms SH3 units, and can be a superconductor at 203 K (−70 °C) and a pressure of 1.5 million atmospheres. [1]

Structures

Unit cell diagram showing the structure of
NaH7, which contains
H-3 complexes. The coloured balls in the isosurface, plotted at the level of 0.07 electrons*A . One of
H2 molecules is bonded to a hydrogen atom in the NaH unit with a bond length of 1.25 A, forming a
H-3 linear anion. Sodium pentahydride unit cell.jpg
Unit cell diagram showing the structure of NaH7, which contains H3 complexes. The coloured balls in the isosurface, plotted at the level of 0.07 electrons*Å . One of H2 molecules is bonded to a hydrogen atom in the NaH unit with a bond length of 1.25 Å, forming a H3 linear anion.

The polyhydrides of alkaline earth and alkali metals contain cage structures. Also hydrogen may be clustered into H, H3, or H2 units. Polyhydrides of transition metals may have the hydrogen atoms arranged around the metal atom. Computations suggest that increasing hydrogen levels will reduce the dimensionality of the metal arrangement, so that layers form separated by hydrogen sheets. [1] The H3 substructure is linear. [2]

H+3 would form triangular structures in the hypothetical H5Cl. [2]

Compounds

When sodium hydride is compressed with hydrogen, NaH3 and NaH7 form. These are formed at 30 GPa and 2,100 K. [2]

Heating and compressing a metal with ammonia borane avoids using bulky hydrogen, and produces boron nitride as a decomposition product in addition to the polyhydride. [3]

formulanametemperature

°C

pressure

GPa

crystal structurespace groupa Åbcβcell volumeformulae

per unit cell

Tc KCommentrefs
LiH2lithium dihydride27130 [4]
LiH6Lithium hexahydride [1]
LiH7Lithium heptahydride [1]
NaH3sodium trihydrideorthorhombicCmcm3.332 Å6.354 Å4.142 Å9087.694 [2]
NaH7sodium heptahydridemonoclinicCc6.993.5975.54169.465130.5 [2]
CaHx50022double hexagon [5]
CaHx600121 [5]
SrH6pseudo cubicPm3msemiconductor

metallize > 220 GPa

[6]
Sr3H13C2/m [6]
SrH22138triclinicP1 [6]
BaH12Barium dodecahydride75pseudo cubic5.435.415.3739.4820K [7] [8]
FeH5 iron pentahydride 120066tetragonalI4/mmm [1]
H3S Sulfur trihydride 25150cubicIm3m203K [9]
H3SeSelenium trihydride10 [10]
YH4yttrium tetrahydride700160I4/mmm [11]
YH6yttrium hexahydride700160Im-3m224 [11] [12] [13]
YH9 yttrium nonahydride 400237P63/mmc243 [11]
LaH10 Lanthanum decahydride 1000170cubicFm3m5.095.095.091324250K [14] [15]
LaH10 Lanthanum decahydride 25121HexagonalR3m3.673.678.831 [14]
LaD11 Lanthanum undecahydride 2150130-160TetragonalP4/nmm168 [15]
LaH12 Lanthanum dodecahydride Cubicinsulating [15]
LaH7Lanthanum heptahydride25109monoclinicC2/m6.443.83.6913563.92 [14]
CeH9Cerium nonahydride93hexagonalP63/mmc3.7115.54333.053100K [16]
CeH10Cerium decahydrideFm3m115K [17]
PrH9Praseodymium nonahydride90-140P63/mmc3.605.4761.555K 9K [18] [19]
PrH9Praseodymium nonahydride120F43m4.9812469K [18]
NdH4Neodymium tetrahydride85-135tetragonalI4/mmm2.82345,7808 [20]
NdH7Neodymium heptahydride85-135monoclinicC2/c3.31776.2525.70789.354 [20]
NdH9Neodymium nonahydride110-130hexagonalP63/mmc3.4585.935 [20]
EuH450-130I4/mmm [21]
Eu8H461600130cubicPm3n5.865 [21]
EuH9Europium nonahydride86-130cubicF43m [21]
EuH9Europium nonahydride>130hexagonalP63/mmc [21]
ThH4Thorium tetrahydride86I4/mmm2.9034.42157.232 [3]
ThH4Thorium tetrahydride88trigonalP3215.5003.2986.18 [3]
ThH4Thorium tetrahydrideorthorhombicFmmm [3]
ThH6Thorium hexahydride86-104Cmc2132.36 [3]
ThH9Thorium nonahydride2100152hexagonalP63/mmc3.7135.54166.20 [3]
ThH10Thorium decahydride180085-185cubicFm3m5.29148.0161 [3]
ThH10Thorium decahydride<85Immm5.3043.2873.64774.03 [3]
UH7Uranium heptahydride200063fccP63/mmc [22]
UH8Uranium octahydride3001-55fccFm3m [22]
UH9Uranium nonahydride40-55fccP63/mmc [22]

Predicted

Using computational chemistry many other polyhydrides are predicted, including LiH8, [23] LiH9, [24] LiH10, [24] CsH3, [25] KH5, RbH5, [26] RbH9, [23] NaH9, BaH6, [26] CaH6, [27] MgH4, MgH12, MgH16, [28] SrH4, [29] SrH10, SrH12, [23] ScH4, ScH6, ScH8, [30] YH4 and YH6, [31] YH24, LaH8, LaH10, [32] YH9, LaH11, CeH8, CeH9, CeH10, [33] PrH8, PrH9, [34] ThH6, ThH7 and ThH10, [35] U2H13, UH7, UH8, UH9, [22] AlH5, [36] GaH5, InH5, [23] SnH8, SnH12, SnH14, [37] PbH8, [38] SiH8 (subsequently discovered), [23] GeH8, [39] (although Ge3H11 may be stable instead) [40] AsH8, SbH4, [41] BiH4, BiH5, BiH6, [42] H3Se, [43] H3S, [44] Te2H5, TeH4, [45] PoH4, PoH6, [23] H2F, H3F, [23] H2Cl, H3Cl, H5Cl, H7Cl, [46] H2Br, H3Br, H4Br, H5Br, H5I, [23] XeH2, XeH4. [47]

Among the transition elements, VH8 in a C2/m structure around 200 GPa is predicted to have a superconducting transition temperature of 71.4 K. VH5 in a P63/mmm space group has a lower transition temperature. [48]

Properties

Superconduction

Under suitably high pressures polyhydrides may become superconducting. Characteristics of substances that are predicted to have high superconducting temperatures are a high phonon frequency, which will happen for light elements, and strong bonds. Hydrogen is the lightest and so will have the highest frequency of vibration. Even changing the isotope to deuterium will lower the frequency and lower the transition temperature. Compounds with more hydrogen will resemble the predicted metallic hydrogen. However, superconductors also tend to be substances with high symmetry and also need the electrons not to be locked into molecular subunits, and require large numbers of electrons in states near the Fermi level. There should also be electron-phonon coupling which happens when the electric properties are tied to the mechanical position of the hydrogen atoms. [34] [49] [50] The highest superconduction critical temperatures are predicted to be in groups 3 and 3 of the periodic table. Late transitions elements, heavy lanthanides or actinides have extra d- or f-electrons that interfere with superconductivity. [51]

For example, lithium hexahydride is predicted to lose all electrical resistance below 38 K at a pressure of 150 GPa. The hypothetical LiH8 has a predicted superconducting transition temperature at 31 K at 200 GPa. [52] MgH6 is predicted to have a Tc of 400 K around 300 GPa. [53] CaH6 could have a Tc of 260 K at 120 GPa. PH3 doped H3S is also predicted to have a transition temperature above the 203 K measured for H3S (contaminated with solid sulfur). [54] Rare earth and actinide polyhydrides may also have highish transition temperatures, for example, ThH10 with Tc = 241 K. [35] UH8, which can be decompressed to room temperature without decomposition, is predicted to have a transition temperature of 193 K. [35] AcH10, if it could be ever made, is predicted to superconduct at temperatures over 204 K, and AcH10 would be similarly conducting under lower pressures (150 GPa). [55]

H3Se actually is a van der Waals solid with formula 2H2Se·H2 with a measured Tc of 105 K under a pressure of 135 GPa. [10]

Ternary superhydrides

Ternary superhydrides open up the possibility of many more formulas. [56] For example, Li2MgH16 may also be superconducting at high temperatures (200 °C). [57] A compound of lanthanum, boron and hydrogen is speculated to be a "hot" superconductor (550 K). [58] [59] Elements may substitute for others and so modify the properties eg (La,Y)H6 and (La,Y)H10 can be made to have a slightly higher critical temperature than YH6 or LaH10. [60]

See also

Related Research Articles

<span class="mw-page-title-main">Superconductivity</span> Electrical conductivity with exactly zero resistance

Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered, even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source.

<span class="mw-page-title-main">High-temperature superconductivity</span> Superconductive behavior at temperatures much higher than absolute zero

High-temperature superconductors are defined as materials with critical temperature above 77 K, the boiling point of liquid nitrogen. They are only "high-temperature" relative to previously known superconductors, which function at even colder temperatures, close to absolute zero. The "high temperatures" are still far below ambient, and therefore require cooling. The first break through of high-temperature superconductor was discovered in 1986 by IBM researchers Georg Bednorz and K. Alex Müller. Although the critical temperature is around 35.1 K, this new type of superconductor was readily modified by Ching-Wu Chu to make the first high-temperature superconductor with critical temperature 93 K. Bednorz and Müller were awarded the Nobel Prize in Physics in 1987 "for their important break-through in the discovery of superconductivity in ceramic materials". Most high-Tc materials are type-II superconductors.

Metallic hydrogen is a phase of hydrogen in which it behaves like an electrical conductor. This phase was predicted in 1935 on theoretical grounds by Eugene Wigner and Hillard Bell Huntington.

Palladium hydride is metallic palladium that contains a substantial quantity of hydrogen within its crystal lattice. Despite its name, it is not an ionic hydride but rather an alloy of palladium with metallic hydrogen that can be written PdHx. At room temperature, palladium hydrides may contain two crystalline phases, α and β. Pure α-phase exists at x < 0.017 whereas pure β-phase is realised for x > 0.58; intermediate x values correspond to α-β mixtures.

A room-temperature superconductor is a hypothetical material capable of displaying superconductivity at temperatures above 0 °C, which are commonly encountered in everyday settings. As of 2023, the material with the highest accepted superconducting temperature was highly pressurized lanthanum decahydride, whose transition temperature is approximately 250 K (−23 °C) at 200 GPa.

<span class="mw-page-title-main">Iron-based superconductor</span>

Iron-based superconductors (FeSC) are iron-containing chemical compounds whose superconducting properties were discovered in 2006. In 2008, led by recently discovered iron pnictide compounds, they were in the first stages of experimentation and implementation..

<span class="mw-page-title-main">Covalent superconductor</span> Superconducting materials where the atoms are linked by covalent bonds

Covalent superconductors are superconducting materials where the atoms are linked by covalent bonds. The first such material was boron-doped synthetic diamond grown by the high-pressure high-temperature (HPHT) method. The discovery had no practical importance, but surprised most scientists as superconductivity had not been observed in covalent semiconductors, including diamond and silicon.

Iron(II) selenide refers to a number of inorganic compounds of ferrous iron and selenide (Se2−). The phase diagram of the system Fe–Se reveals the existence of several non-stoichiometric phases between ~49 at. % Se and ~53 at. % Fe, and temperatures up to ~450 °C. The low temperature stable phases are the tetragonal PbO-structure (P4/nmm) β-Fe1−xSe and α-Fe7Se8. The high temperature phase is the hexagonal, NiAs structure (P63/mmc) δ-Fe1−xSe. Iron(II) selenide occurs naturally as the NiAs-structure mineral achavalite.

CeCoIn5 ("Cerium-Cobalt-Indium 5") is a heavy-fermion superconductor with a layered crystal structure, with somewhat two-dimensional electronic transport properties. The critical temperature of 2.3 K is the highest among all of the Ce-based heavy-fermion superconductors.

<span class="mw-page-title-main">Artem Oganov</span>

Artem R. Oganov is a Russian theoretical crystallographer, mineralogist, chemist, physicist, and materials scientist. He is known mostly for his works on computational materials discovery and crystal structure prediction, studies of matter at extreme conditions, including matter of planetary interiors.

Yttrium hydride is a compound of hydrogen and yttrium. It is considered to be a part of the class of rare-earth metal hydrides. It exists in several forms, the most common being a metallic compound with formula YH2. YH2 has a face-centred cubic structure, and is a metallic compound. Under great pressure, extra hydrogen can combine to yield an insulator with a hexagonal structure, with a formula close to YH3. Hexagonal YH3 has a band gap of 2.6 eV. Under pressure of 12 GPa YH3 transforms to an intermediate state, and when the pressure increases to 22 GPa another metallic face-centred cubic phase is formed.

<span class="mw-page-title-main">Mikhail Eremets</span>

Mikhail Ivanovich Eremets is an experimentalist in high pressure physics, chemistry and materials science. He is particularly known for his research on superconductivity, having discovered the highest critical temperature of 250 K (-23 °C) for superconductivity in lanthanum hydride under high pressures. Part of his research contains exotic manifestations of materials such as conductive hydrogen, polymeric nitrogen and transparent sodium.

<span class="mw-page-title-main">Disodium helide</span> Chemical compound

Disodium helide (Na2He) is a compound of helium and sodium that is stable at high pressures above 113 gigapascals (1,130,000 bar). It was first predicted using the USPEX crystal structure prediction algorithm and then synthesised in 2016.

Lanthanum decahydride is a polyhydride or superhydride compound of lanthanum and hydrogen (LaH10) that has shown evidence of being a high-temperature superconductor. It has a superconducting transition temperature TC around 250 K (−23 °C; −10 °F) at a pressure of 150 gigapascals (22×10^6 psi), and its synthesis required pressures above approximately 160 gigapascals (23×10^6 psi).

In chemistry, a hydridonitride is a chemical compound that contains hydride and nitride ions in a single phase. These inorganic compounds are distinct from inorganic amides and imides as the hydrogen does not share a bond with nitrogen, and contain a larger proportion of metals.

An arsenide hydride or hydride arsenide is a chemical compound containing hydride (H) and arsenide (As3−) ions in a single phase. They are in the class of mixed anion compounds.

Metallization pressure is the pressure required for a non-metallic chemical element to become a metal. Every material is predicted to turn into a metal if the pressure is high enough, and temperature low enough. Some of these pressures are beyond the reach of diamond anvil cells, and are thus theoretical predictions. Neon has the highest metallization pressure for any element.

Carbonaceous sulfur hydride (CSH) is a purported room-temperature superconductor that was announced in October 2020. The material is claimed to have a maximal superconducting transition temperature of 15 °C (59 °F) at a pressure of 267 gigapascals (GPa), though the validity of the claim has faced criticism. In September 2022 the article was retracted by Nature due to a non standard, user-defined data analysis calling into question the scientific validity of the claim. In July 2023 a second paper by the author was retracted from Physical Review Letters due to suspected data fabrication.

Ranga P. Dias is a researcher and academic who specializes in condensed matter physics. He is an assistant professor in Mechanical Engineering and Physics and Astronomy at the University of Rochester and a scientist at the Laboratory for Laser Energetics.

References

  1. 1 2 3 4 5 6 7 Pépin, C. M.; Geneste, G.; Dewaele, A.; Mezouar, M.; Loubeyre, P. (27 July 2017). "Synthesis of FeH5 : A layered structure with atomic hydrogen slabs". Science. 357 (6349): 382–385. Bibcode:2017Sci...357..382P. doi: 10.1126/science.aan0961 . PMID   28751605.
  2. 1 2 3 4 5 Struzhkin, Viktor V.; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-kwang; Pickard, Chris J.; Needs, Richard J.; Prakapenka, Vitali B.; Goncharov, Alexander F. (28 July 2016). "Synthesis of sodium polyhydrides at high pressures". Nature Communications. 7: 12267. Bibcode:2016NatCo...712267S. doi:10.1038/ncomms12267. PMC   4974473 . PMID   27464650.
  3. 1 2 3 4 5 6 7 8 Semenok, D. V.; Kvashnin, A. G; Ivanova, A. G.; Troayn, I. A.; Oganov, A. R. (2019). "Synthesis of ThH4, ThH6, ThH9 and ThH10 : a route to room-temperature superconductivity". doi:10.13140/RG.2.2.31274.88003.{{cite journal}}: Cite journal requires |journal= (help)
  4. Pépin, Charles; Loubeyre, Paul; Occelli, Florent; Dumas, Paul (23 June 2015). "Synthesis of lithium polyhydrides above 130 GPa at 300 K". Proceedings of the National Academy of Sciences. 112 (25): 7673–7676. Bibcode:2015PNAS..112.7673P. doi: 10.1073/pnas.1507508112 . PMC   4485130 . PMID   26056306.
  5. 1 2 Mishra, Ajay Kumar; Ahart, Muhtar; Somayazulu, Maddury; Park, C. Y; Hemley, Russel J (2017-03-13). "Synthesis of Calcium polyhydrides at high pressure and high temperature". Bulletin of the American Physical Society. 62 (4): B35.008. Bibcode:2017APS..MARB35008M.
  6. 1 2 3 Semenok, Dmitrii V.; Chen, Wuhao; Huang, Xiaoli; Zhou, Di; Kruglov, Ivan A.; Mazitov, Arslan B.; Galasso, Michele; Tantardini, Christian; Gonze, Xavier; Kvashnin, Alexander G.; Oganov, Artem R. (2022-06-03). "Sr‐Doped Superionic Hydrogen Glass: Synthesis and Properties of SrH 22". Advanced Materials. 34 (27): 2200924. arXiv: 2110.15628 . Bibcode:2022AdM....3400924S. doi:10.1002/adma.202200924. ISSN   0935-9648. PMID   35451134. S2CID   240288572.
  7. chen, Wuhao (April 2020). "High-Pressure Synthesis of Barium Superhydrides: Pseudocubic BaH12". ResearchGate. Retrieved 2020-04-28.
  8. Chen, Wuhao; Semenok, Dmitrii V.; Kvashnin, Alexander G.; Huang, Xiaoli; Kruglov, Ivan A.; Galasso, Michele; Song, Hao; Duan, Defang; Goncharov, Alexander F.; Prakapenka, Vitali B.; Oganov, Artem R.; Cui, Tian (December 2021). "Synthesis of molecular metallic barium superhydride: pseudocubic BaH12". Nature Communications. 12 (1): 273. arXiv: 2004.12294 . Bibcode:2021NatCo..12..273C. doi: 10.1038/s41467-020-20103-5 . PMC   7801595 . PMID   33431840.
  9. Shylin, S. I.; Ksenofontov, V.; Troyan, I. A.; Eremets, M. I.; Drozdov, A. P. (September 2015). "Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system". Nature. 525 (7567): 73–76. arXiv: 1506.08190 . Bibcode:2015Natur.525...73D. doi:10.1038/nature14964. ISSN   1476-4687. PMID   26280333. S2CID   4468914.
  10. 1 2 Mishra, A. K.; Somayazulu, M.; Ahart, M.; Karandikar, A.; Hemley, R. J.; Struzhkin, V. (9 March 2018). "Novel Synthesis Route and Observation of Superconductivity in the Se-H System at Extreme Conditions". APS March Meeting Abstracts. 63 (1): X38.008. Bibcode:2018APS..MARX38008M.
  11. 1 2 3 Kong, P. P.; Minkov, V. S.; Kuzovnikov, M. A.; Besedin, S. P.; Drozdov, A. P.; Mozaffari, S.; Balicas, L.; Balakirev, F. F.; Prakapenka, V. B.; Greenberg, E.; Knyazev, D. A. (2019-09-23). "Superconductivity up to 243 K in yttrium hydrides under high pressure". arXiv: 1909.10482 [cond-mat.supr-con].
  12. Troyan, I. A.; Semenok, D. V.; Kvashnin, A. G.; Ivanova, A. G.; Prakapenka, V. B.; Greenberg, E.; Gavriliuk, A. G.; Lyubutin, I. S.; Struzhkin, V. V.; Oganov, A. R. (2021). "Anomalous High‐Temperature Superconductivity in YH 6". Advanced Materials. 33 (15): e2006832. arXiv: 1908.01534 . Bibcode:2021AdM....3306832T. doi:10.1002/adma.202006832. ISSN   0935-9648. PMID   33751670. S2CID   219636252.
  13. Troyan, Ivan A.; Semenok, Dmitrii V.; Kvashnin, Alexander G.; Sadakov, Andrey V.; Sobolevskiy, Oleg A.; Pudalov, Vladimir M.; Ivanova, Anna G.; Prakapenka, Vitali B.; Greenberg, Eran; Gavriliuk, Alexander G.; Lyubutin, Igor S.; Struzhkin, Viktor V.; Bergara, Aitor; Errea, Ion; Bianco, Raffaello; Calandra, Matteo; Mauri, Francesco; Monacelli, Lorenzo; Akashi, Ryosuke; Oganov, Artem R. (10 March 2021). "Anomalous High‐Temperature Superconductivity in YH 6". Advanced Materials. 33 (15): 2006832. arXiv: 1908.01534 . Bibcode:2021AdM....3306832T. doi:10.1002/adma.202006832. ISSN   0935-9648. PMID   33751670. S2CID   219636252.
  14. 1 2 3 Geballe, Zachary M.; Liu, Hanyu; Mishra, Ajay K.; Ahart, Muhtar; Somayazulu, Maddury; Meng, Yue; Baldini, Maria; Hemley, Russell J. (15 January 2018). "Synthesis and Stability of Lanthanum Superhydrides". Angewandte Chemie International Edition. 57 (3): 688–692. Bibcode:2018APS..MARX38010G. doi: 10.1002/anie.201709970 . PMID   29193506.
  15. 1 2 3 Drozdov, A. P.; Kong, P. P.; Minkov, V. S.; Besedin, S. P.; Kuzovnikov, M. A.; Mozaffari, S.; Balicas, L.; Balakirev, F. F.; Graf, D. E.; Prakapenka, V. B.; Greenberg, E.; Knyazev, D. A.; Tkacz, M.; Eremets, M. I. (22 May 2019). "Superconductivity at 250 K in lanthanum hydride under high pressures". Nature. 569 (7757): 528–531. arXiv: 1812.01561 . Bibcode:2019Natur.569..528D. doi:10.1038/s41586-019-1201-8. PMID   31118520. S2CID   119231000.
  16. Salke, Nilesh P. (May 2018). "Synthesis of clathrate cerium superhydride CeH9 below 100 GPa with atomic hydrogen sublattice". Nature Communications. 10 (1): 4453. arXiv: 1805.02060 . doi:10.1038/s41467-019-12326-y. PMC   6773858 . PMID   31575861.
  17. Chen, Wuhao; Semenok, Dmitrii V.; Huang, Xiaoli; Shu, Haiyun; Li, Xin; Duan, Defang; Cui, Tian; Oganov, Artem R. (2021-09-09). "High-Temperature Superconducting Phases in Cerium Superhydride with a T c up to 115 K below a Pressure of 1 Megabar". Physical Review Letters. 127 (11): 117001. arXiv: 2101.01315 . Bibcode:2021PhRvL.127k7001C. doi:10.1103/PhysRevLett.127.117001. ISSN   0031-9007. PMID   34558917. S2CID   230524009.
  18. 1 2 Zhou, Di; Semenok, Dmitrii; Defang Duan; Xie, Hui; Xiaoli Huang; Wuhao Chen; Li, Xin; Bingbing Liu; Oganov, Artem R (2019). "Superconducting Praseodymium Superhydrides". Unpublished. 6 (9): eaax6849. arXiv: 1904.06643 . Bibcode:2020SciA....6.6849Z. doi:10.1126/sciadv.aax6849. PMC   7048426 . PMID   32158937.
  19. Zhou, Di; Semenok, Dmitrii V.; Duan, Defang; Xie, Hui; Chen, Wuhao; Huang, Xiaoli; Li, Xin; Liu, Bingbing; Oganov, Artem R.; Cui, Tian (February 2020). "Superconducting praseodymium superhydrides". Science Advances. 6 (9): eaax6849. arXiv: 1904.06643 . Bibcode:2020SciA....6.6849Z. doi:10.1126/sciadv.aax6849. ISSN   2375-2548. PMC   7048426 . PMID   32158937.
  20. 1 2 3 Zhou, Di; Semenok, Dmitrii V.; Xie, Hui; Huang, Xiaoli; Duan, Defang; Aperis, Alex; Oppeneer, Peter M.; Galasso, Michele; Kartsev, Alexey I.; Kvashnin, Alexander G.; Oganov, Artem R. (2020-02-12). "High-Pressure Synthesis of Magnetic Neodymium Polyhydrides". Journal of the American Chemical Society. 142 (6): 2803–2811. arXiv: 1908.08304 . doi:10.1021/jacs.9b10439. ISSN   0002-7863. PMID   31967807. S2CID   201330599.
  21. 1 2 3 4 Semenok, Dmitrii V.; Zhou, Di; Kvashnin, Alexander G.; Huang, Xiaoli; Galasso, Michele; Kruglov, Ivan A.; Ivanova, Anna G.; Gavriliuk, Alexander G.; Chen, Wuhao; Tkachenko, Nikolay V.; Boldyrev, Alexander I. (2020-12-09). "Novel Strongly Correlated Europium Superhydrides". The Journal of Physical Chemistry Letters. 12 (1): 32–40. arXiv: 2012.05595 . doi:10.1021/acs.jpclett.0c03331. ISSN   1948-7185. PMID   33296213. S2CID   228084018.
  22. 1 2 3 4 Kruglov, Ivan A.; Kvashnin, Alexander G.; Goncharov, Alexander F.; Oganov, Artem R.; Lobanov, Sergey; Holtgrewe, Nicholas; Yanilkin, Alexey V. (17 August 2017). "High-temperature superconductivity of uranium hydrides at near-ambient conditions". arXiv: 1708.05251 [cond-mat.mtrl-sci].
  23. 1 2 3 4 5 6 7 8 Duan, Defang; Liu, Yunxian; Ma, Yanbin; Shao, Ziji; Liu, Bingbing; Cui, Tian (28 April 2016). "Structure and superconductivity of hydrides at high pressures". National Science Review. 4: 121–135. doi: 10.1093/nsr/nww029 .
  24. 1 2 Chen, Yangmei; Geng, Hua Y.; Yan, Xiaozhen; Sun, Yi; Wu, Qiang; Chen, Xiangrong (2017). "Prediction of Stable Ground-State Lithium Polyhydrides under High Pressures". Inorganic Chemistry. 56 (7): 3867–3874. arXiv: 1705.04199 . doi:10.1021/acs.inorgchem.6b02709. PMID   28318270. S2CID   21976165.
  25. Shamp, Andrew; Hooper, James; Zurek, Eva (3 September 2012). "Compressed Cesium Polyhydrides: Cs+ Sublattices and H3- Three-Connected Nets". Inorganic Chemistry. 51 (17): 9333–9342. doi:10.1021/ic301045v. PMID   22897718.
  26. 1 2 Zurek, Eva (6 June 2016). "Hydrides of the Alkali Metals and Alkaline Earth Metals Under Pressure". Comments on Inorganic Chemistry. 37 (2): 78–98. doi:10.1080/02603594.2016.1196679. S2CID   99251100.
  27. Wang, H.; Tse, J. S.; Tanaka, K.; Iitaka, T.; Ma, Y. (6 April 2012). "Superconductive sodalite-like clathrate calcium hydride at high pressures". Proceedings of the National Academy of Sciences. 109 (17): 6463–6466. arXiv: 1203.0263 . Bibcode:2012PNAS..109.6463W. doi: 10.1073/pnas.1118168109 . PMC   3340045 . PMID   22492976.
  28. Lonie, David C.; Hooper, James; Altintas, Bahadir; Zurek, Eva (19 February 2013). "Metallization of magnesium polyhydrides under pressure". Physical Review B. 87 (5): 054107. arXiv: 1301.4750 . Bibcode:2013PhRvB..87e4107L. doi:10.1103/PhysRevB.87.054107. S2CID   85453835.
  29. Hooper, James; Terpstra, Tyson; Shamp, Andrew; Zurek, Eva (27 March 2014). "Composition and Constitution of Compressed Strontium Polyhydrides". The Journal of Physical Chemistry C. 118 (12): 6433–6447. doi:10.1021/jp4125342.
  30. Qian, Shifeng (2017). "Theoretical study of stability and superconductivity of". Physical Review B. 96 (9): 094513. Bibcode:2017PhRvB..96i4513Q. doi:10.1103/physrevb.96.094513.
  31. Li, Yinwei; Hao, Jian; Liu, Hanyu; Tse, John S.; Wang, Yanchao; Ma, Yanming (5 May 2015). "Pressure-stabilized superconductive yttrium hydrides". Scientific Reports. 5 (1): 9948. Bibcode:2015NatSR...5E9948L. doi:10.1038/srep09948. PMC   4419593 . PMID   25942452.
  32. Liu, Hanyu; Naumov, Ivan I.; Hoffmann, Roald; Ashcroft, N. W.; Hemley, Russell J. (3 July 2017). "Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure". Proceedings of the National Academy of Sciences. 114 (27): 6990–6995. Bibcode:2017PNAS..114.6990L. doi: 10.1073/pnas.1704505114 . PMC   5502634 . PMID   28630301.
  33. Tsuppayakorn-aek, Prutthipong; Pinsook, Udomsilp; Luo, Wei; Ahuja, Rajeev; Bovornratanaraks, Thiti (12 August 2020). "Superconductivity of Superhydride CeH10 under High Pressure". Materials Research Express. 7 (8): 086001. Bibcode:2020MRE.....7h6001T. doi: 10.1088/2053-1591/ababc2 . S2CID   225379054.
  34. 1 2 Peng, Feng; Sun, Ying; Pickard, Chris J.; Needs, Richard J.; Wu, Qiang; Ma, Yanming (8 September 2017). "Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity" (PDF). Physical Review Letters. 119 (10): 107001. Bibcode:2017PhRvL.119j7001P. doi:10.1103/PhysRevLett.119.107001. PMID   28949166.
  35. 1 2 3 Kvashnin, Alexander G.; Semenok, Dmitry V.; Kruglov, Ivan A.; Oganov, Artem R. (November 2017). "High-Temperature Superconductivity in Th-H System at Pressure Conditions". arXiv: 1711.00278 . doi:10.1021/acsami.8b17100.
  36. Hou, Pugeng; Zhao, Xiusong; Tian, Fubo; Li, Da; Duan, Defang; Zhao, Zhonglong; Chu, Binhua; Liu, Bingbing; Cui, Tian (2015). "High pressure structures and superconductivity of AlH3(H2) predicted by first principles". RSC Adv. 5 (7): 5096–5101. Bibcode:2015RSCAd...5.5096H. doi:10.1039/C4RA14990D. S2CID   97440127.
  37. Mahdi Davari Esfahani, M.; Wang, Zhenhai; Oganov, Artem R.; Dong, Huafeng; Zhu, Qiang; Wang, Shengnan; Rakitin, Maksim S.; Zhou, Xiang-Feng (11 March 2016). "Superconductivity of novel tin hydrides (Snn Hm) under pressure". Scientific Reports. 6 (1): 22873. arXiv: 1512.07604 . Bibcode:2016NatSR...622873M. doi:10.1038/srep22873. PMC   4786816 . PMID   26964636.
  38. Cheng, Ya; Zhang, Chao; Wang, Tingting; Zhong, Guohua; Yang, Chunlei; Chen, Xiao-Jia; Lin, Hai-Qing (12 November 2015). "Pressure-induced superconductivity in H2-containing hydride PbH4(H2)2". Scientific Reports. 5 (1): 16475. Bibcode:2015NatSR...516475C. doi:10.1038/srep16475. PMC   4642309 . PMID   26559369.
  39. Szcze¸śniak, R.; Szcze¸śniak, D.; Durajski, A.P. (April 2014). "Thermodynamics of the superconducting phase in compressed GeH4(H2)2". Solid State Communications. 184: 6–11. Bibcode:2014SSCom.184....6S. doi:10.1016/j.ssc.2013.12.036.
  40. Davari Esfahani, M. Mahdi; Oganov, Artem R.; Niu, Haiyang; Zhang, Jin (10 April 2017). "Superconductivity and unexpected chemistry of germanium hydrides under pressure". Physical Review B. 95 (13): 134506. arXiv: 1701.05600 . Bibcode:2017PhRvB..95m4506D. doi:10.1103/PhysRevB.95.134506. S2CID   43481894.
  41. Fu, Yuhao; Du, Xiangpo; Zhang, Lijun; Peng, Feng; Zhang, Miao; Pickard, Chris J.; Needs, Richard J.; Singh, David J.; Zheng, Weitao; Ma, Yanming (22 March 2016). "High-Pressure Phase Stability and Superconductivity of Pnictogen Hydrides and Chemical Trends for Compressed Hydrides". Chemistry of Materials. 28 (6): 1746–1755. arXiv: 1510.04415 . doi:10.1021/acs.chemmater.5b04638. S2CID   54571045.
  42. Ma, Yanbin; Duan, Defang; Li, Da; Liu, Yunxian; Tian, Fubo; Yu, Hongyu; Xu, Chunhong; Shao, Ziji; Liu, Bingbing; Cui, Tian (17 November 2015). "High-pressure structures and superconductivity of bismuth hydrides". arXiv: 1511.05291 [cond-mat.supr-con].
  43. Zhang, Shoutao; Wang, Yanchao; Zhang, Jurong; Liu, Hanyu; Zhong, Xin; Song, Hai-Feng; Yang, Guochun; Zhang, Lijun; Ma, Yanming (22 October 2015). "Phase Diagram and High-Temperature Superconductivity of Compressed Selenium Hydrides". Scientific Reports. 5 (1): 15433. arXiv: 1502.02607 . Bibcode:2015NatSR...515433Z. doi:10.1038/srep15433. PMC   4614537 . PMID   26490223.
  44. Durajski, Artur P.; Szczęśniak, Radosław (30 June 2017). "First-principles study of superconducting hydrogen sulfide at pressure up to 500 GPa". Scientific Reports. 7 (1): 4473. Bibcode:2017NatSR...7.4473D. doi:10.1038/s41598-017-04714-5. PMC   5493702 . PMID   28667259.
  45. Zhong, Xin; Wang, Hui; Zhang, Jurong; Liu, Hanyu; Zhang, Shoutao; Song, Hai-Feng; Yang, Guochun; Zhang, Lijun; Ma, Yanming (4 February 2016). "Tellurium Hydrides at High Pressures: High-Temperature Superconductors". Physical Review Letters. 116 (5): 057002. arXiv: 1503.00396 . Bibcode:2016PhRvL.116e7002Z. doi:10.1103/PhysRevLett.116.057002. PMID   26894729. S2CID   14435357.
  46. Duan, Defang; Huang, Xiaoli; Tian, Fubo; Liu, Yunxian; Li, Da; Yu, Hongyu; Liu, Bingbing; Tian, Wenjing; Cui, Tian (12 November 2015). "Predicted Formation of H3+ in Solid Halogen Polyhydrides at High Pressures". The Journal of Physical Chemistry A. 119 (45): 11059–11065. Bibcode:2015JPCA..11911059D. doi:10.1021/acs.jpca.5b08183. PMID   26469181.
  47. Yan, Xiaozhen; Chen, Yangmei; Kuang, Xiaoyu; Xiang, Shikai (28 September 2015). "Structure, stability, and superconductivity of new Xe–H compounds under high pressure". The Journal of Chemical Physics. 143 (12): 124310. Bibcode:2015JChPh.143l4310Y. doi: 10.1063/1.4931931 . PMID   26429014.
  48. Li, Xiaofeng; Peng, Feng (2 November 2017). "Superconductivity of Pressure-Stabilized Vanadium Hydrides". Inorganic Chemistry. 56 (22): 13759–13765. doi:10.1021/acs.inorgchem.7b01686. PMID   29094931.
  49. Pietronero, Luciano; Boeri, Lilia; Cappelluti, Emmanuele; Ortenzi, Luciano (9 September 2017). "Conventional/unconventional superconductivity in high-pressure hydrides and beyond: insights from theory and perspectives". Quantum Studies: Mathematics and Foundations. 5: 5–21. doi:10.1007/s40509-017-0128-8. hdl: 11573/1622515 . S2CID   139800480.
  50. Pinsook, Udomsilp (July 2020). "In search for near-room-temperature superconducting critical temperature of metal superhydrides under high pressure: A review". Journal of Metals, Materials and Minerals. 30: 31. doi:10.14456/jmmm.2020.18.
  51. Semenok, Dmitrii V.; Kruglov, Ivan A.; Savkin, Igor A.; Kvashnin, Alexander G.; Oganov, Artem R. (April 2020). "On Distribution of Superconductivity in Metal Hydrides". Current Opinion in Solid State and Materials Science. 24 (2): 100808. arXiv: 1806.00865 . Bibcode:2020COSSM..24j0808S. doi:10.1016/j.cossms.2020.100808. S2CID   119433896.
  52. Xie, Yu; Li, Quan; Oganov, Artem R.; Wang, Hui (31 January 2014). "Superconductivity of lithium-doped hydrogen under high pressure". Acta Crystallographica Section C. 70 (2): 104–111. doi:10.1107/S2053229613028337. PMID   24508954.
  53. Szczȩśniak, R.; Durajski, A. P. (13 July 2016). "Superconductivity well above room temperature in compressed MgH6". Frontiers of Physics. 11 (6): 117406. Bibcode:2016FrPhy..11k7406S. doi:10.1007/s11467-016-0578-1. S2CID   124245616.
  54. Eremets, M I; Drozdov, A P (30 November 2016). "High-temperature conventional superconductivity". Physics-Uspekhi. 59 (11): 1154–1160. Bibcode:2016PhyU...59.1154E. doi:10.3367/UFNe.2016.09.037921. S2CID   126290095.
  55. Semenok, Dmitrii V; Kvashnin, Alexander G; Kruglov, Ivan A; Oganov, Artem R (2018). "Actinium hydrides AcH10, AcH12, AcH16 as high-temperature conventional superconductors". The Journal of Physical Chemistry Letters. 9 (8): 1920–1926. arXiv: 1802.05676 . doi:10.1021/acs.jpclett.8b00615. PMID   29589444. S2CID   4620593.
  56. Sukmas, Wiwittawin; Tsuppayakorn-aek, Prutthipong; Pinsook, Udomsilp; Bovornratanaraks, Thiti (30 December 2020). "Near-room-temperature superconductivity of Mg/Ca substituted metal hexahydride under pressure". Journal of Alloys and Compounds. 849: 156434. doi:10.1016/j.jallcom.2020.156434. S2CID   225031775.
  57. Flores-Livas, José A.; Arita, Ryotaro (26 August 2019). "A Prediction for "Hot" Superconductivity". Physics. 12: 96. Bibcode:2019PhyOJ..12...96F. doi: 10.1103/Physics.12.96 .
  58. Grockowiak, A. D.; Ahart, M.; Helm, T.; Coniglio, W. A.; Kumar, R.; Somayazulu, M.; Meng, Y.; Oliff, M.; Williams, V.; Ashcroft, N. W.; Hemley, R. J.; Tozer, S. W. (2022). "Hot Hydride Superconductivity Above 550 K". Frontiers in Electronic Materials. 2. arXiv: 2006.03004 . doi: 10.3389/femat.2022.837651 .
  59. Di Cataldo, Simone; von der Linden, Wolfgang; Boeri, Lilia (2021-06-14). "La-$X$-H hydrides: is hot superconductivity possible?". arXiv: 2106.07266 [cond-mat.supr-con].
  60. Semenok, Dmitrii V.; Troyan, Ivan A.; Ivanova, Anna G.; Kvashnin, Alexander G.; Kruglov, Ivan A.; Hanfland, Michael; Sadakov, Andrey V.; Sobolevskiy, Oleg A.; Pervakov, Kirill S.; Lyubutin, Igor S.; Glazyrin, Konstantin V.; Giordano, Nico; Karimov, Denis N.; Vasiliev, Alexander L.; Akashi, Ryosuke; Pudalov, Vladimir M.; Oganov, Artem R. (July 2021). "Superconductivity at 253 K in lanthanum–yttrium ternary hydrides". Materials Today: S1369702121001309. arXiv: 2012.04787 . doi:10.1016/j.mattod.2021.03.025. S2CID   228064078.