Polymethine dyes

Last updated

Methine dyes (polymethine dyes) are dyes whose chromophoric system consists of conjugated double bonds (polyenes) flanked by two end groups: an electron acceptor A and an electron donor D. [1] [2]

Contents

Methine Dyes.svg
Structural of methine dyes

Methine dyes comprise an odd number of methine groups. The end groups can also be part of a heterocycle or the double bonds part of an aromatic system: The methine dye subclasses are based on these structural differences. Methine dyes can furthermore be classified as cationic, anionic or neutral. [3]

If one or more methine groups are replaced by a heteroatom - usually nitrogen - one speaks of heteroanalogous (aza-analogous) methine dyes.

General properties and classification

Methine dyes can be characterized as polyene dyes with terminal electron donating and accepting groups. In the majority of cases, these terminal groups contain nitrogen or oxygen atoms. However, while the naturally occurring polyene dyes (such as carotenoids) are limited to yellow to yellow-red tones, almost all colours of the spectrum can be achieved with the predominantly synthetic methine dyes.

Cyanine dyes

Example: C.I. Basic Red 12 Basic Red 12.svg
Example: C.I. Basic Red 12

The most well-known group of methine dyes are the cationic cyanine dyes. Both terminal groups of the chromophore contain nitrogen atoms, whereas the amino or imino group is part of a heterocycle.

Cyanines.svg
general structure of cyanine dyes

Hemicyanine dyes

Example: C.I. Basic Yellow 11 Basic Yellow 11.svg
Example: C.I. Basic Yellow 11

In the case of hemicyanine dyes, one terminal amino group is part of a heterocycle, while the second terminal group is open-chain.

Hemicyanines.svg
general structure of hemicyanine dyes

Streptocyanine dyes

If both terminal amino and imino groups of the chromophore are open chain, one speaks of streptocyanine dyes.

Streptocyanines.svg
general structure of streptocyanine dyes

Merocyanine dyes

Merocyanine dyes have an amino and a carbonyl group as end groups of the polyene structural element. Both a neutral and a zwitterionic resonance structure can be described for this compound type. [6]

Merocyanines.svg
general structure of merocyanine dyes

Oxonol dyes

Example: Oxonol Blau Oxonol Blue.svg
Example: Oxonol Blau

Members of the oxonol dyes, whose terminal groups contain oxygen as heteroatom, play a role in analogue colour photography [8] and the following of enzymatic reactions via the use of barbituric and thiobarbituric terminal groups. [9] [10]

Oxonoles.svg
general structure of oxonol dyes

Styryl dyes

By condensing an active methylene compound (e.g. malonic acid dinitrile) with a benzaldehyde derivative, styryl dyes are obtained. By integrating a benzene ring into the polyene part, these compounds have a styrene partial structure. Styryl dyes are used as disperse dyes in the dyeing of polyester fibers.

Example: Preparation of C.I. Disperse Yellow 31 (3) by condensation of ethyl cyanoacetate (1) with a p-aminobenzaldehyde derivative. [3] :S. 58

Synthesis Disperse Yellow 31.svg
Synthesis of C.I. Disperse Yellow 31 (3)

Di- and triarylmethine dyes

Also amino- and hydroxy-substituted di- and triarylmethines comprise the structural element of a methine dye:

Triarylmethine Dyes.svg
Triarylmethine dyes, resonance structure (R=H, alkyl)

Triarylmethine dyes are derived from triphenylmethane, in which at least two of the aromatic rings have electron-donating substituents (e.g. amino groups, secondary and tertiary alkylamino groups or hydroxy groups). They are therefore also referred to in older literature as triarylmethane dyes. For the dyes, resonance structure can be described as a carbenium ion or with an iminocyclohexadiene or cyclohexadienone partial structure. The central carbon atom in the dyes is therefore not sp3- but sp2-hybridized. [1] :S. 58

Triarylmethine dyes usually show intensive, luminous colourings with different light fastness. In addition to dyeing and printing textiles, leather and paper, they are also used for printing inks, inks, ballpoint pen pastes and as microscopic dyes. As functional dyes, some representatives of this dye class are used as indicators (phenolphthalein), as disinfectants, anthelmintics and antifungals (e.g. malachite green, crystal violet). [11]

Examples:

Aza-analog methine dyes

If a methine group in a methine dye is replaced by a nitrogen atom, a azamethine dye is obtained (example: C.I. Basic Yellow 28 [12] ). Accordingly, diazamethine dyes are obtained by replacing two methine groups with nitrogen atoms. Diazahemicyanine dyes (examples: C.I. Basic Red 22 [13] and C.I. Basic Blue 41 [14] ) in particular are an important class of methine dyes and are used as cationic dyes in the dyeing of polyacrylonitrile fibers. [3] :S. 57,58

Examples:

The quinonimine dyes are aza-analogous members of the diarylmethine dyes:

General structure of quinonimine dyes where X = OH, NH2 or NR2 Y = O or NH Chinonimine.svg
General structure of quinonimine dyes where X = OH, NH2 or NR2 Y = O or NH

Related Research Articles

In chemistry, amines are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia, wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group. Important amines include amino acids, biogenic amines, trimethylamine, and aniline. Inorganic derivatives of ammonia are also called amines, such as monochloramine.

In chemistry, a zwitterion, also called an inner salt or dipolar ion, is a molecule that contains an equal number of positively- and negatively-charged functional groups. With amino acids, for example, in solution a chemical equilibrium will be established between the "parent" molecule and the zwitterion.

Proline (symbol Pro or P) is an organic acid classed as a proteinogenic amino acid (used in the biosynthesis of proteins), although it does not contain the amino group -NH
2
but is rather a secondary amine. The secondary amine nitrogen is in the protonated form (NH2+) under biological conditions, while the carboxyl group is in the deprotonated −COO form. The "side chain" from the α carbon connects to the nitrogen forming a pyrrolidine loop, classifying it as a aliphatic amino acid. It is non-essential in humans, meaning the body can synthesize it from the non-essential amino acid L-glutamate. It is encoded by all the codons starting with CC (CCU, CCC, CCA, and CCG).

<span class="mw-page-title-main">Fluorophore</span> Agents that emit light after excitation by light

A fluorophore is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with several π bonds.

<span class="mw-page-title-main">1,8-Bis(dimethylamino)naphthalene</span> Chemical compound

1,8-Bis(dimethylamino)naphthalene is an organic compound with the formula C10H6(NMe2)2 (Me = methyl). It is classified as a peri-naphthalene, i.e. a 1,8-disubstituted derivative of naphthalene. Owing to its unusual structure, it exhibits exceptional basicity. It is often referred by the trade name Proton Sponge, a trademark of Sigma-Aldrich.

Thiazole, or 1,3-thiazole, is a heterocyclic compound that contains both sulfur and nitrogen. The term 'thiazole' also refers to a large family of derivatives. Thiazole itself is a pale yellow liquid with a pyridine-like odor and the molecular formula C3H3NS. The thiazole ring is notable as a component of the vitamin thiamine (B1).

<span class="mw-page-title-main">Triazine</span> Aromatic, heterocyclic compound

Triazines are a class of nitrogen-containing heterocycles. The parent molecules' molecular formula is C3H3N3. They exist in three isomeric forms, 1,3,5-triazines being common.

Organosulfur compounds are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature abounds with organosulfur compounds—sulfur is vital for life. Of the 20 common amino acids, two are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds, the removal of which is a major focus of oil refineries.

Polyene antimycotics, sometimes referred to as polyene antibiotics, are a class of antimicrobial polyene compounds that target fungi. These polyene antimycotics are typically obtained from some species of Streptomyces bacteria. Previously, polyenes were thought to bind to ergosterol in the fungal cell membrane and thus weakening it and causing leakage of K+ and Na+ ions, which could contribute to fungal cell death. However, more detailed studies of polyene molecular properties have challenged this model suggesting that polyenes instead bind and extract ergosterol directly from the cellular membrane thus disrupting the many cellular functions ergosterols perform. Amphotericin B, nystatin, and natamycin are examples of polyene antimycotics. They are a subgroup of macrolides.

Cyanines, also referred to as tetramethylindo(di)-carbocyanines are a synthetic dye family belonging to the polymethine group. Although the name derives etymologically from terms for shades of blue, the cyanine family covers the electromagnetic spectrum from near IR to UV.

<span class="mw-page-title-main">Tetraphenylmethane</span> Chemical compound

Tetraphenylmethane is an organic compound consisting of a methane core with four phenyl substituents. It was first synthesized by Moses Gomberg in 1898.

<span class="mw-page-title-main">Polythiazyl</span> Chemical compound

Polythiazyl, (SN)x, is an electrically conductive, gold- or bronze-colored polymer with metallic luster. It was the first conductive inorganic polymer discovered and was also found to be a superconductor at very low temperatures. It is a fibrous solid, described as "lustrous golden on the faces and dark blue-black", depending on the orientation of the sample. It is air stable and insoluble in all solvents.

Nitrile hydratases are mononuclear iron or non-corrinoid cobalt enzymes that catalyse the hydration of diverse nitriles to their corresponding amides

<span class="mw-page-title-main">Hexazine</span> Chemical compound

Hexazine is an allotrope of nitrogen composed of 6 nitrogen atoms arranged in a ring-like structure analogous to that of benzene. As a neutral-charged species, it would be the final member of the azabenzene (azine) series, in which all of the methine groups of the benzene molecule have been replaced with nitrogen atoms. The two last members of this series, hexazine and pentazine, have not been observed, although all other members of the azine series have.

<span class="mw-page-title-main">Aminopolycarboxylic acid</span>

An aminopolycarboxylic acid is a chemical compound containing one or more nitrogen atoms connected through carbon atoms to two or more carboxyl groups. Aminopolycarboxylates that have lost acidic protons form strong complexes with metal ions. This property makes aminopolycarboxylic acids useful complexone in a wide variety of chemical, medical, and environmental applications.

<span class="mw-page-title-main">Hans Kuhn (chemist)</span>

Hans Kuhn was a Swiss chemist. He was professor emeritus for physical chemistry and former scientific director at the Max Planck Institute for Biophysical Chemistry in Göttingen.

These drugs are known in the UK as controlled drugs, because this is the term by which the act itself refers to them. In more general terms, however, many of these drugs are also controlled by the Medicines Act 1968, there are many other drugs which are controlled by the Medicines Act but not by the Misuse of Drugs Act, and some other drugs are controlled by other laws.

<span class="mw-page-title-main">Anthraquinone dyes</span>

Anthraquinone dyes are an abundant group of dyes comprising a anthraquinone unit as the shared structural element. Anthraquinone itself is colourless, but red to blue dyes are obtained by introducing electron donor groups such as hydroxy or amino groups in the 1-, 4-, 5- or 8-position. Anthraquinone dyestuffs are structurally related to indigo dyestuffs and are classified together with these in the group of carbonyl dyes.

Lysine carboxypeptidase is an enzyme. This enzyme catalyses the following chemical reaction:

<span class="mw-page-title-main">Structural scheduling of synthetic cannabinoids</span>

To combat the illicit synthetic cannabinoid industry many jurisdictions have created a system to control these cannabinoids through their general structure as opposed to their specific identity. In this way new analogs are already controlled before they are even created. A large number of cannabinoids have been grouped into classes based on similarities in their chemical structure, and these classes have been widely adopted across a variety of jurisdictions.

References

  1. 1 2 Zollinger, Heinrich (2003), Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments (in German) (3 ed.), Weinheim: WILEY-VCH Verlag, p. 68, ISBN   3-906390-23-3
  2. Entry on Polymethin-Farbstoffe . at: Römpp Online . Georg Thieme Verlag, retrieved 1 February 2019.
  3. 1 2 3 Hunger, Klaus, ed. (2003), Industrial Dyes: Chemistry, Properties, Applications (in German), Weinheim: WILEY-VCH Verlag, pp. 56–67, ISBN   978-3-662-01950-4
  4. Externe Identifikatoren von bzw. Datenbank-Links zu C.I. Basic Red 12: CAS-Nummer: 6320-14-5, EG-Nummer: 228-668-0, ECHA-InfoCard: 100.026.062, PubChem: 6540442
  5. Externe Identifikatoren von bzw. Datenbank-Links zu C.I. Basic Yellow 11 (basic yellow 11): CAS-Nummer: 4208-80-4, EG-Nummer: 224-132-5, ECHA-InfoCard: 100.021.939, PubChem: 6436295, ChemSpider: 66308, Wikidata: Q27251133.
  6. Entry on Merocyanine . at: Römpp Online . Georg Thieme Verlag, retrieved 22 July 2019.
  7. Externe Identifikatoren von bzw. Datenbank-Links zu Oxonole Blue dipotassium salt: CAS-Nummer: 51858-17-4, EG-Nummer: 257-479-6, ECHA-InfoCard: 100.052.237, PubChem: 20833147.
  8. Entry on Oxonol-Farbstoffe . at: Römpp Online . Georg Thieme Verlag, retrieved 22 July 2019.
  9. Desvals, Arthur; Fortino, Mariagrazia; Lefebvre, Corentin; Rogier, Johann; Michelin, Clément; Alioui, Samy; Rousset, Elodie; Pedone, Alfonso; Lemercier, Gilles; Hoffmann, Norbert (2022-04-13). "Synthesis and characterization of polymethine dyes carrying thiobarbituric and a carboxylic acid moieties". New Journal of Chemistry. 46 (19): 8971–8980. doi:10.1039/D2NJ00684G. ISSN   1369-9261. S2CID   248165785.
  10. Nedjma, Mustapha; Hoffmann, Norbert; Belarbi, Abdel (2001-04-15). "Selective and Sensitive Detection of Pectin Lyase Activity Using a Colorimetric Test: Application to the Screening of Microorganisms Possessing Pectin Lyase Activity". Analytical Biochemistry. 291 (2): 290–296. doi:10.1006/abio.2001.5032. ISSN   0003-2697. PMID   11401303.
  11. Entry on Triarylmethan-Farbstoffe . at: Römpp Online . Georg Thieme Verlag, retrieved 1 February 2019.
  12. Externe Identifikatoren von bzw. Datenbank-Links zu C.I. Basic Yellow 28 (basic yellow 28): CAS-Nummer: 54060-92-3, EG-Nummer: 258-946-7, ECHA-InfoCard: 100.053.570, PubChem: 9570625, ChemSpider: 7845092, Wikidata: Q27254755.
  13. Externe Identifikatoren von bzw. Datenbank-Links zu C.I. Basic Red 22: CAS-Nummer: 12221-52-2, EG-Nummer: 602-140-3, ECHA-InfoCard: 100.115.765, PubChem: 73759884, ChemSpider: 21167832, Wikidata: Q27268936.
  14. Externe Identifikatoren von bzw. Datenbank-Links zu C.I. Basic Blue 41 (basic blue 41): CAS-Nummer: 12270-13-2, EG-Nummer: 235-546-0, ECHA-InfoCard: 100.032.302, PubChem: 83008, ChemSpider: 74891, Wikidata: Q27252322.