Quasi-set theory

Last updated

Quasi-set theory is a formal mathematical theory for dealing with collections of objects, some of which may be indistinguishable from one another. Quasi-set theory is mainly motivated by the assumption that certain objects treated in quantum physics are indistinguishable and don't have individuality.

Contents

Motivation

The American Mathematical Society sponsored a 1974 meeting to evaluate the resolution and consequences of the 23 problems Hilbert proposed in 1900. An outcome of that meeting was a new list of mathematical problems, the first of which, due to Manin (1976, p. 36), questioned whether classical set theory was an adequate paradigm for treating collections of indistinguishable elementary particles in quantum mechanics. He suggested that such collections cannot be sets in the usual sense, and that the study of such collections required a "new language".

The use of the term quasi-set follows a suggestion in da Costa's 1980 monograph Ensaio sobre os Fundamentos da Lógica (see da Costa and Krause 1994), in which he explored possible semantics for what he called "Schrödinger Logics". In these logics, the concept of identity is restricted to some objects of the domain, and has motivation in Schrödinger's claim that the concept of identity does not make sense for elementary particles (Schrödinger 1952). Thus in order to provide a semantics that fits the logic, da Costa submitted that "a theory of quasi-sets should be developed", encompassing "standard sets" as particular cases, yet da Costa did not develop this theory in any concrete way. To the same end and independently of da Costa, Dalla Chiara and di Francia (1993) proposed a theory of quasets to enable a semantic treatment of the language of microphysics. The first quasi-set theory was proposed by D. Krause in his PhD thesis, in 1990 (see Krause 1992). A related physics theory, based on the logic of adding fundamental indistinguishability to equality and inequality, was developed and elaborated independently in the book The Theory of Indistinguishables by A. F. Parker-Rhodes. [1]

Summary of the theory

We now expound Krause's (1992) axiomatic theory , the first quasi-set theory; other formulations and improvements have since appeared. For an updated paper on the subject, see French and Krause (2010). Krause builds on the set theory ZFU, consisting of Zermelo-Fraenkel set theory with an ontology extended to include two kinds of urelements:

Quasi-sets (q-sets) are collections resulting from applying axioms, very similar to those for ZFU, to a basic domain composed of m-atoms, M-atoms, and aggregates of these. The axioms of include equivalents of extensionality, but in a weaker form, termed "weak extensionality axiom"; axioms asserting the existence of the empty set, unordered pair, union set, and power set; the axiom of separation; an axiom stating the image of a q-set under a q-function is also a q-set; q-set equivalents of the axioms of infinity, regularity, and choice. Q-set theories based on other set-theoretical frameworks are, of course, possible.

has a primitive concept of quasi-cardinal, governed by eight additional axioms, intuitively standing for the quantity of objects in a collection. The quasi-cardinal of a quasi-set is not defined in the usual sense (by means of ordinals) because the m-atoms are assumed (absolutely) indistinguishable. Furthermore, it is possible to define a translation from the language of ZFU into the language of in such a way so that there is a 'copy' of ZFU in . In this copy, all the usual mathematical concepts can be defined, and the 'sets' (in reality, the '-sets') turn out to be those q-sets whose transitive closure contains no m-atoms.

In there may exist q-sets, called "pure" q-sets, whose elements are all m-atoms, and the axiomatics of provides the grounds for saying that nothing in distinguishes the elements of a pure q-set from one another, for certain pure q-sets. Within the theory, the idea that there is more than one entity in x is expressed by an axiom stating that the quasi-cardinal of the power quasi-set of x has quasi-cardinal 2qc(x), where qc(x) is the quasi-cardinal of x (which is a cardinal obtained in the 'copy' of ZFU just mentioned).

What exactly does this mean? Consider the level 2p of a sodium atom, in which there are six indiscernible electrons. Even so, physicists reason as if there are in fact six entities in that level, and not only one. In this way, by saying that the quasi-cardinal of the power quasi-set of x is 2qc(x) (suppose that qc(x) = 6 to follow the example), we are not excluding the hypothesis that there can exist six subquasi-sets of x that are 'singletons', although we cannot distinguish among them. Whether there are or not six elements in x is something that cannot be ascribed by the theory (although the notion is compatible with the theory). If the theory could answer this question, the elements of x would be individualized and hence counted, contradicting the basic assumption that they cannot be distinguished.

In other words, we may consistently (within the axiomatics of ) reason as if there are six entities in x, but x must be regarded as a collection whose elements cannot be discerned as individuals. Using quasi-set theory, we can express some facts of quantum physics without introducing symmetry conditions (Krause et al. 1999, 2005). As is well known, in order to express indistinguishability, the particles are deemed to be individuals, say by attaching them to coordinates or to adequate functions/vectors like |ψ>. Thus, given two quantum systems labeled |ψ1⟩ and |ψ2⟩ at the outset, we need to consider a function like |ψ12⟩ = |ψ1⟩|ψ2⟩ ± |ψ2⟩|ψ1⟩ (except for certain constants), which keep the quanta indistinguishable by permutations; the probability density of the joint system independs on which is quanta #1 and which is quanta #2. (Note that precision requires that we talk of "two" quanta without distinguishing them, which is impossible in conventional set theories.) In , we can dispense with this "identification" of the quanta; for details, see Krause et al. (1999, 2005) and French and Krause (2006).

Quasi-set theory is a way to operationalize Heinz Post's (1963) claim that quanta should be deemed indistinguishable "right from the start."

See also

Related Research Articles

An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'.

<span class="mw-page-title-main">Cardinal number</span> Size of a possibly infinite set

In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter (aleph) marked with subscript indicating their rank among the infinite cardinals.

The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.

<span class="mw-page-title-main">Quantum mechanics</span> Description of physical properties at the atomic and subatomic scale

Quantum mechanics is a fundamental theory in physics that describes the behavior of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science.

<span class="mw-page-title-main">Louis de Broglie</span> Nobel Laureate physicist (1892–1987)

Louis Victor Pierre Raymond, 7th Duc de Broglie was a French physicist and aristocrat who made groundbreaking contributions to quantum theory. In his 1924 PhD thesis, he postulated the wave nature of electrons and suggested that all matter has wave properties. This concept is known as the de Broglie hypothesis, an example of wave–particle duality, and forms a central part of the theory of quantum mechanics.

The de Broglie–Bohm theory, also known as the pilot wave theory, Bohmian mechanics, Bohm's interpretation, and the causal interpretation, is an interpretation of quantum mechanics. It postulates that in addition to the wavefunction, an actual configuration of particles exists, even when unobserved. The evolution over time of the configuration of all particles is defined by a guiding equation. The evolution of the wave function over time is given by the Schrödinger equation. The theory is named after Louis de Broglie (1892–1987) and David Bohm (1917–1992).

<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

In physics and astronomy, a frame of reference is an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points―geometric points whose position is identified both mathematically and physically.

<span class="mw-page-title-main">Wave function</span> Mathematical description of the quantum state of a system

In quantum physics, a wave function, is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ. Wave functions are composed of complex numbers. For example, a wave function might assign a complex number to each point in a region of space. The Born rule provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density of measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called normalization. Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.

<span class="mw-page-title-main">Probability amplitude</span> Complex number whose squared absolute value is a probability

In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity represents a probability density.

In the mathematical study of logic and the physical analysis of quantum foundations, quantum logic is a set of rules for manip­ulation of propositions inspired by the structure of quantum theory. The formal system takes as its starting point an obs­ervation of Garrett Birkhoff and John von Neumann, that the structure of experimental tests in classical mechanics forms a Boolean algebra, but the structure of experimental tests in quantum mechanics forms a much more complicated structure.

In mathematical logic, New Foundations (NF) is an axiomatic set theory, conceived by Willard Van Orman Quine as a simplification of the theory of types of Principia Mathematica. Quine first proposed NF in a 1937 article titled "New Foundations for Mathematical Logic"; hence the name. Much of this entry discusses NF with urelements (NFU), an important variant of NF due to Jensen and clarified by Holmes. In 1940 and in a revision in 1951, Quine introduced an extension of NF sometimes called "Mathematical Logic" or "ML", that included proper classes as well as sets.

In theoretical physics, supersymmetric quantum mechanics is an area of research where supersymmetry are applied to the simpler setting of plain quantum mechanics, rather than quantum field theory. Supersymmetric quantum mechanics has found applications outside of high-energy physics, such as providing new methods to solve quantum mechanical problems, providing useful extensions to the WKB approximation, and statistical mechanics.

<span class="mw-page-title-main">Pilot wave theory</span> One interpretation of quantum mechanics

In theoretical physics, the pilot wave theory, also known as Bohmian mechanics, was the first known example of a hidden-variable theory, presented by Louis de Broglie in 1927. Its more modern version, the de Broglie–Bohm theory, interprets quantum mechanics as a deterministic theory, avoiding troublesome notions such as wave–particle duality, instantaneous wave function collapse, and the paradox of Schrödinger's cat. To solve these problems, the theory is inherently nonlocal.

<span class="mw-page-title-main">Newton da Costa</span> Brazilian philosopher and mathematician

Newton Carneiro Affonso da Costa is a Brazilian mathematician, logician, and philosopher. He studied engineering and mathematics at the Federal University of Paraná in Curitiba and the title of his 1961 Ph.D. dissertation was Topological spaces and continuous functions.

In theoretical physics, the BRST formalism, or BRST quantization denotes a relatively rigorous mathematical approach to quantizing a field theory with a gauge symmetry. Quantization rules in earlier quantum field theory (QFT) frameworks resembled "prescriptions" or "heuristics" more than proofs, especially in non-abelian QFT, where the use of "ghost fields" with superficially bizarre properties is almost unavoidable for technical reasons related to renormalization and anomaly cancellation.

The quantum potential or quantum potentiality is a central concept of the de Broglie–Bohm formulation of quantum mechanics, introduced by David Bohm in 1952.

The history of quantum mechanics is a fundamental part of the history of modern physics. The major chapters of this history begin with the emergence of quantum ideas to explain individual phenomena -- blackbody radiation, the photoelectric effect, solar emission spectra -- an era called the Old or Older quantum theories. Building on the technology developed in classical mechanics, the invention of wave mechanics by Erwin Schrödinger and expanded by many others triggers the "modern" era beginning around 1925. Paul Dirac's relativistic quantum theory work lead him to explore quantum theories of radiation, culminating in quantum electrodynamics, the first quantum field theory. The history of quantum mechanics continues in the history of quantum field theory. The history of quantum chemistry, theoretical basis of chemical structure, reactivity, and bonding, interlaces with the events discussed in this article.

Schrödinger logics are a kind of non-classical logic in which the law of identity is restricted.

References

  1. A. F. Parker-Rhodes, The Theory of Indistinguishables: A Search for Explanatory Principles below the level of Physics, Reidel (Springer), Dordecht (1981). ISBN   90-277-1214-X