Quotient of an abelian category

Last updated

In mathematics, the quotient (also called Serre quotient or Gabriel quotient) of an abelian category by a Serre subcategory is the abelian category which, intuitively, is obtained from by ignoring (i.e. treating as zero) all objects from . There is a canonical exact functor whose kernel is , and is in a certain sense the most general abelian category with this property.

Contents

Forming Serre quotients of abelian categories is thus formally akin to forming quotients of groups. Serre quotients are somewhat similar to quotient categories, the difference being that with Serre quotients all involved categories are abelian and all functors are exact. Serre quotients also often have the character of localizations of categories, especially if the Serre subcategory is localizing.

Definition

Formally, is the category whose objects are those of and whose morphisms from X to Y are given by the direct limit (of abelian groups)

where the limit is taken over subobjects and such that and . (Here, and denote quotient objects computed in .) These pairs of subobjects are ordered by .

Composition of morphisms in is induced by the universal property of the direct limit.

The canonical functor sends an object X to itself and a morphism to the corresponding element of the direct limit with X′ = X and Y′ = 0.

An alternative, equivalent construction of the quotient category uses what is called a "calculus of fractions" to define the morphisms of . Here, one starts with the class of those morphisms in whose kernel and cokernel both belong to . This is a multiplicative system in the sense of Gabriel-Zisman, and one can localize the category at the system to obtain . [1]

Examples

Let be a field and consider the abelian category of all vector spaces over . Then the full subcategory of finite-dimensional vector spaces is a Serre-subcategory of . The Serre quotient has as objects the -vector spaces, and the set of morphisms from to in is

(which is a quotient of vector spaces). This has the effect of identifying all finite-dimensional vector spaces with 0, and of identifying two linear maps whenever their difference has finite-dimensional image. This example shows that the Serre quotient can behave like a quotient category.

For another example, take the abelian category Ab of all abelian groups and the Serre subcategory of all torsion abelian groups. The Serre quotient here is equivalent to the category of all vector spaces over the rationals, with the canonical functor given by tensoring with . Similarly, the Serre quotient of the category of finitely generated abelian groups by the subcategory of finitely generated torsion groups is equivalent to the category of finite-dimensional vectorspaces over . [2] Here, the Serre quotient behaves like a localization.

Properties

The Serre quotient is an abelian category, and the canonical functor is exact and surjective on objects. The kernel of is , i.e., is zero in if and only if belongs to .

The Serre quotient and canonical functor are characterized by the following universal property: if is any abelian category and is an exact functor such that is a zero in for each object , then there is a unique exact functor such that . [3]

Given three abelian categories , , , we have

if and only if

there exists an exact and essentially surjective functor whose kernel is and such that for every morphism in there exist morphisms and in so that is an isomorphism and .

Theorems involving Serre quotients

Serre's description of coherent sheaves on a projective scheme

According to a theorem by Jean-Pierre Serre, the category of coherent sheaves on a projective scheme (where is a commutative noetherian graded ring, graded by the non-negative integers and generated by degree-0 and finitely many degree-1 elements, and refers to the Proj construction) can be described as the Serre quotient

where denotes the category of finitely-generated graded modules over and is the Serre subcategory consisting of all those graded modules which are 0 in all degrees that are high enough, i.e. for which there exists such that for all . [4] [5]

A similar description exists for the category of quasi-coherent sheaves on , even if is not noetherian.

Gabriel–Popescu theorem

The Gabriel–Popescu theorem states that any Grothendieck category is equivalent to a Serre quotient of the form , where denotes the abelian category of right modules over some unital ring , and is some localizing subcategory of . [6]

Quillen's localization theorem

Daniel Quillen's algebraic K-theory defines to each exact category a sequence of abelian groups , and this assignment is functorial in . Quillen proved that, if is a Serre subcategory of the abelian category , there is a long exact sequence of the form [7]

Related Research Articles

In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very stable categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory.

In mathematics, specifically in category theory, a pre-abelian category is an additive category that has all kernels and cokernels.

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, the derived categoryD(A) of an abelian category A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the objects of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences.

In mathematics, the Grothendieck group, or group of differences, of a commutative monoid M is a certain abelian group. This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.

In mathematics, a triangulated category is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy category. The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology.

In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory.

In mathematics, a quotient category is a category obtained from another one by identifying sets of morphisms. Formally, it is a quotient object in the category of categories, analogous to a quotient group or quotient space, but in the categorical setting.

In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.

In mathematics, a Grothendieck category is a certain kind of abelian category, introduced in Alexander Grothendieck's Tôhoku paper of 1957 in order to develop the machinery of homological algebra for modules and for sheaves in a unified manner. The theory of these categories was further developed in Pierre Gabriel's seminal thesis in 1962.

In mathematics, specifically representation theory, tilting theory describes a way to relate the module categories of two algebras using so-called tilting modules and associated tilting functors. Here, the second algebra is the endomorphism algebra of a tilting module over the first algebra.

This is a glossary of algebraic geometry.

In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times that of s for any f in O(U) and s in F(U).

In mathematics, Serre and localizing subcategories form important classes of subcategories of an abelian category. Localizing subcategories are certain Serre subcategories. They are strongly linked to the notion of a quotient category.

In algebraic geometry, a presheaf with transfers is, roughly, a presheaf that, like cohomology theory, comes with pushforwards, “transfer” maps. Precisely, it is, by definition, a contravariant additive functor from the category of finite correspondences to the category of abelian groups.

In mathematics, derived noncommutative algebraic geometry, the derived version of noncommutative algebraic geometry, is the geometric study of derived categories and related constructions of triangulated categories using categorical tools. Some basic examples include the bounded derived category of coherent sheaves on a smooth variety, , called its derived category, or the derived category of perfect complexes on an algebraic variety, denoted . For instance, the derived category of coherent sheaves on a smooth projective variety can be used as an invariant of the underlying variety for many cases. Unfortunately, studying derived categories as geometric objects of themselves does not have a standardized name.

References

  1. Section 12.10 The Stacks Project
  2. "109.76 The category of modules modulo torsion modules". The Stacks Project.
  3. Gabriel, Pierre, Des categories abeliennes , Bull. Soc. Math. France 90 (1962), 323-448.
  4. Görtz, Ulrich; Wedhorn, Torsten (2020). "Remark 13.21". Algebraic Geometry I: Schemes: With Examples and Exercises (2nd ed.). Springer Nature. p. 381. ISBN   9783658307332.
  5. "Proposition 30.14.4". The Stacks Project.
  6. N. Popesco; P. Gabriel (1964). "Caractérisation des catégories abéliennes avec générateurs et limites inductives exactes". Comptes Rendus de l'Académie des Sciences. 258: 4188–4190.
  7. Quillen, Daniel (1973). "Higher algebraic K-theory: I" (PDF). Higher K-Theories. Lecture Notes in Mathematics. Springer. 341: 85–147. doi:10.1007/BFb0067053. ISBN   978-3-540-06434-3.