Quotient category

Last updated

In mathematics, a quotient category is a category obtained from another category by identifying sets of morphisms. Formally, it is a quotient object in the category of (locally small) categories, analogous to a quotient group or quotient space, but in the categorical setting.

Contents

Definition

Let C be a category. A congruence relation R on C is given by: for each pair of objects X, Y in C, an equivalence relation RX,Y on Hom(X,Y), such that the equivalence relations respect composition of morphisms. That is, if

are related in Hom(X, Y) and

are related in Hom(Y, Z), then g1f1 and g2f2 are related in Hom(X, Z).

Given a congruence relation R on C we can define the quotient categoryC/R as the category whose objects are those of C and whose morphisms are equivalence classes of morphisms in C. That is,

Composition of morphisms in C/R is well-defined since R is a congruence relation.

Properties

There is a natural quotient functor from C to C/R which sends each morphism to its equivalence class. This functor is bijective on objects and surjective on Hom-sets (i.e. it is a full functor).

Every functor F : CD determines a congruence on C by saying f ~ g iff F(f) = F(g). The functor F then factors through the quotient functor CC/~ in a unique manner. This may be regarded as the "first isomorphism theorem" for categories.

Examples

Quotients of additive categories modulo ideals

If C is an additive category and we require the congruence relation ~ on C to be additive (i.e. if f1, f2, g1 and g2 are morphisms from X to Y with f1 ~ f2 and g1 ~g2, then f1 + g1 ~ f2 + g2), then the quotient category C/~ will also be additive, and the quotient functor CC/~ will be an additive functor.

The concept of an additive congruence relation is equivalent to the concept of a two-sided ideal of morphisms: for any two objects X and Y we are given an additive subgroup I(X,Y) of HomC(X, Y) such that for all fI(X,Y), g HomC(Y, Z) and h HomC(W, X), we have gfI(X,Z) and fhI(W,Y). Two morphisms in HomC(X, Y) are congruent iff their difference is in I(X,Y).

Every unital ring may be viewed as an additive category with a single object, and the quotient of additive categories defined above coincides in this case with the notion of a quotient ring modulo a two-sided ideal.

Localization of a category

The localization of a category introduces new morphisms to turn several of the original category's morphisms into isomorphisms. This tends to increase the number of morphisms between objects, rather than decrease it as in the case of quotient categories. But in both constructions it often happens that two objects become isomorphic that weren't isomorphic in the original category.

Serre quotients of abelian categories

The Serre quotient of an abelian category by a Serre subcategory is a new abelian category which is similar to a quotient category but also in many cases has the character of a localization of the category.

Related Research Articles

In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.

In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

<span class="mw-page-title-main">Isomorphism</span> In mathematics, invertible homomorphism

In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσοςisos "equal", and μορφήmorphe "form" or "shape".

In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.

In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very stable categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory.

<span class="mw-page-title-main">Category (mathematics)</span> Mathematical object that generalizes the standard notions of sets and functions

In mathematics, a category is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions.

In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–

In category theory, an epimorphism is a morphism f : XY that is right-cancellative in the sense that, for all objects Z and all morphisms g1, g2: YZ,

In mathematics, specifically in category theory, a pre-abelian category is an additive category that has all kernels and cokernels.

In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set A can be thought of as being a "generic" algebraic structure over A: the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices.

In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.

In category theory, a coequalizer is a generalization of a quotient by an equivalence relation to objects in an arbitrary category. It is the categorical construction dual to the equalizer.

In mathematics, localization of a category consists of adding to a category inverse morphisms for some collection of morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it in general makes objects isomorphic that were not so before. In homotopy theory, for example, there are many examples of mappings that are invertible up to homotopy; and so large classes of homotopy equivalent spaces. Calculus of fractions is another name for working in a localized category.

In mathematics, the derived categoryD(A) of an abelian category A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the objects of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences.

In mathematics, the Grothendieck group, or group of differences, of a commutative monoid M is a certain abelian group. This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.

In mathematics, a triangulated category is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy category. The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Michael Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology.

In homological algebra in mathematics, the homotopy categoryK(A) of chain complexes in an additive category A is a framework for working with chain homotopies and homotopy equivalences. It lies intermediate between the category of chain complexes Kom(A) of A and the derived category D(A) of A when A is abelian; unlike the former it is a triangulated category, and unlike the latter its formation does not require that A is abelian. Philosophically, while D(A) turns into isomorphisms any maps of complexes that are quasi-isomorphisms in Kom(A), K(A) does so only for those that are quasi-isomorphisms for a "good reason", namely actually having an inverse up to homotopy equivalence. Thus, K(A) is more understandable than D(A).

<span class="mw-page-title-main">Category of rings</span> Mathematical category whose objects are rings

In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings and whose morphisms are ring homomorphisms. Like many categories in mathematics, the category of rings is large, meaning that the class of all rings is proper.

References