Samir D. Mathur

Last updated
Samir D. Mathur
Samir Mathur.png
Prof. Samir Mathur
Born
Samir Dayal Mathur

Karur, Tamil Nadu, India
Alma mater IIT Kanpur (M.S., 1981)
TIFR (Ph.D., 1987)
Known for Fuzzball (string theory)
Contributions to:
String Theory
AdS/CFT
Black hole information paradox
Scientific career
Fields Physics
Institutions Ohio State University
MIT

Samir Dayal Mathur is a theoretical physicist who specializes in string theory and black hole physics.

Contents

Career

Teaching

Mathur is a professor in the Department of Physics at Ohio State University and a member of the University's High Energy Theory Group. He was a faculty member at Massachusetts Institute of Technology from 1991–99 and held postdoctoral positions at Harvard University and the Tata Institute of Fundamental Research. [1]

Research

Mathur's research is focused on string theory, black holes, the AdS/CFT correspondence, and cosmology. He is best known for developing the Fuzzball conjecture as a resolution of the black hole information paradox. The Fuzzball conjecture asserts that the fundamental description of black holes is given by a quantum bound state of matter which has the same size as the corresponding classical black hole. [2] This quantum bound state replaces the event horizon and singularity, and the classical black hole metric is claimed to be an approximate effective description. [3]

In 2009 Mathur published a strong version of the black hole information paradox, strengthening Stephen Hawking's original version by demonstrating that small local corrections to Hawking's semiclassical analysis cannot restore unitarity. [4] This result was obtained by applying Strong Subadditivity of Quantum Entropy to the evaporation of Hawking radiation. [4] This led to a renewed interest in the information paradox and the development of the 2012 black hole firewall paradox. [5] [6] [7]

Related Research Articles

The holographic principle is a property of string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region — such as a light-like boundary like a gravitational horizon. First proposed by Gerard 't Hooft, it was given a precise string theoretic interpretation by Leonard Susskind, who combined his ideas with previous ones of 't Hooft and Charles Thorn. Leonard Susskind said, "The three-dimensional world of ordinary experience––the universe filled with galaxies, stars, planets, houses, boulders, and people––is a hologram, an image of reality coded on a distant two-dimensional surface." As pointed out by Raphael Bousso, Thorn observed in 1978 that string theory admits a lower-dimensional description in which gravity emerges from it in what would now be called a holographic way. The prime example of holography is the AdS/CFT correspondence.

In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity.

Hawking radiation is the theoretical thermal black-body radiation released outside a black hole's event horizon. This is counterintuitive because once ordinary electromagnetic radiation is inside the event horizon, it cannot escape. It is named after the physicist Stephen Hawking, who developed a theoretical argument for its existence in 1974. Hawking radiation is predicted to be extremely faint and is many orders of magnitude below the current best telescopes' detecting ability.

The no-hair theorem states that all stationary black hole solutions of the Einstein–Maxwell equations of gravitation and electromagnetism in general relativity can be completely characterized by only three independent externally observable classical parameters: mass, electric charge, and angular momentum. Other characteristics are uniquely determined by these three parameters, and all other information about the matter that formed a black hole or is falling into it "disappears" behind the black-hole event horizon and is therefore permanently inaccessible to external observers after the black hole "settles down". Physicist John Archibald Wheeler expressed this idea with the phrase "black holes have no hair", which was the origin of the name.

<span class="mw-page-title-main">Black hole thermodynamics</span> Area of study

In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the understanding of quantum gravity, leading to the formulation of the holographic principle.

<span class="mw-page-title-main">Juan Maldacena</span> Argentine physicist (born 1968)

Juan Martín Maldacena is an Argentine theoretical physicist and the Carl P. Feinberg Professor in the School of Natural Sciences at the Institute for Advanced Study, Princeton. He has made significant contributions to the foundations of string theory and quantum gravity. His most famous discovery is the AdS/CFT correspondence, a realization of the holographic principle in string theory.

In theoretical physics, the anti-de Sitter/conformal field theory correspondence is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter spaces (AdS) that are used in theories of quantum gravity, formulated in terms of string theory or M-theory. On the other side of the correspondence are conformal field theories (CFT) that are quantum field theories, including theories similar to the Yang–Mills theories that describe elementary particles.

In theoretical physics, an extremal black hole is a black hole with the minimum possible mass that is compatible with its charge and angular momentum.

<span class="mw-page-title-main">Black hole information paradox</span> Mystery of disappearance of information in a black hole

The black hole information paradox is a paradox that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from which nothing—not even light—can escape. In the 1970s, Stephen Hawking applied the semiclassical approach of quantum field theory in curved spacetime to such systems and found that an isolated black hole would emit a form of radiation. He also argued that the detailed form of the radiation would be independent of the initial state of the black hole, and depend only on its mass, electric charge and angular momentum.

Fuzzballs are hypothetical objects in superstring theory, intended to provide a fully quantum description of the black holes predicted by general relativity.

Black hole complementarity is a conjectured solution to the black hole information paradox, proposed by Leonard Susskind, Larus Thorlacius, and Gerard 't Hooft.

The Bousso bound captures a fundamental relation between quantum information and the geometry of space and time. It appears to be an imprint of a unified theory that combines quantum mechanics with Einstein's general relativity. The study of black hole thermodynamics and the information paradox led to the idea of the holographic principle: the entropy of matter and radiation in a spatial region cannot exceed the Bekenstein–Hawking entropy of the boundary of the region, which is proportional to the boundary area. However, this "spacelike" entropy bound fails in cosmology; for example, it does not hold true in our universe.

Raphael Bousso is a theoretical physicist and cosmologist. He is a professor at the Berkeley Center for Theoretical Physics in the Department of Physics, UC Berkeley. He is known for the Bousso bound on the information content of the universe. With Joseph Polchinski, Bousso proposed the string theory landscape as a solution to the cosmological constant problem.

A black hole firewall is a hypothetical phenomenon where an observer falling into a black hole encounters high-energy quanta at the event horizon. The "firewall" phenomenon was proposed in 2012 by physicists Ahmed Almheiri, Donald Marolf, Joseph Polchinski, and James Sully as a possible solution to an apparent inconsistency in black hole complementarity. The proposal is sometimes referred to as the AMPS firewall, an acronym for the names of the authors of the 2012 paper. The potential inconsistency pointed out by AMPS had been pointed out earlier by Samir Mathur who used the argument in favour of the fuzzball proposal. The use of a firewall to resolve this inconsistency remains controversial, with physicists divided as to the solution to the paradox.

Gary T. Horowitz is an American theoretical physicist who works on string theory and quantum gravity.

ER = EPR is a conjecture in physics stating that two entangled particles are connected by a wormhole and is thought by some to be a basis for unifying general relativity and quantum mechanics into a theory of everything.

The Ryu–Takayanagi conjecture is a conjecture within holography that posits a quantitative relationship between the entanglement entropy of a conformal field theory and the geometry of an associated anti-de Sitter spacetime. The formula characterizes "holographic screens" in the bulk; that is, it specifies which regions of the bulk geometry are "responsible to particular information in the dual CFT". The conjecture is named after Shinsei Ryu and Tadashi Takayanagi, who jointly published the result in 2006. As a result, the authors were awarded the 2015 New Horizons in Physics Prize for "fundamental ideas about entropy in quantum field theory and quantum gravity". The formula was generalized to a covariant form in 2007.

Sumit Ranjan Das is a US-based Indian high energy physicist and a professor at the University of Kentucky. Known for his research on string theory, Das is an elected fellow of the Indian Academy of Sciences. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, for his contributions to physical sciences in 1998.

A. W. Peet is a professor of physics at the University of Toronto. Peet's research interests include string theory as a quantum theory of gravity, quantum field theory and applications of string theory to black holes, gauge theories, cosmology, and the correspondence between anti-de Sitter space and conformal field theories.

In quantum information, the Hayden–Preskill thought experiment is a thought experiment that investigates the black hole information paradox by hypothesizing on how long it takes to decode information thrown in a black hole from its Hawking radiation.

References

  1. "Faculty information sheet". The Ohio State University. Archived from the original on 2015-04-04. Retrieved 2015-03-29.{{cite journal}}: Cite journal requires |journal= (help)
  2. Samir D. Mathur (2005). "The Fuzzball proposal for black holes: An Elementary review". Fortschr. Phys. 53 (7–8): 793–827. arXiv: hep-th/0502050 . Bibcode:2005ForPh..53..793M. doi:10.1002/prop.200410203. S2CID   15083147.
  3. Samir D. Mathur (2012). "Black Holes and Beyond". Annals of Physics. 327 (11): 2760. arXiv: 1205.0776 . Bibcode:2012AnPhy.327.2760M. doi:10.1016/j.aop.2012.05.001. S2CID   119198601.
  4. 1 2 Samir D. Mathur (2009). "The Information paradox: A Pedagogical introduction". Class. Quantum Grav. 26 (22): 224001. arXiv: 0909.1038 . Bibcode:2009CQGra..26v4001M. doi:10.1088/0264-9381/26/22/224001. S2CID   18878424.
  5. Jennifer Ouellette, "The Fuzzball Fix for a Black Hole Paradox", Quanta magazine, June 23, 2015. https://www.quantamagazine.org/how-fuzzballs-solve-the-black-hole-firewall-paradox-20150623/
  6. Chowdhury Borun D., Puhm Andrea (2013). "Decoherence and the fate of an infalling wave packet: Is Alice burning or fuzzing?". Phys. Rev. D. 88 (6): 063509. arXiv: 1208.2026 . Bibcode:2013PhRvD..88f3509C. doi:10.1103/PhysRevD.88.063509. S2CID   3104184.
  7. Burrington Benjamin A., Peet Amanda W., Zadeh Ida G. (2013). "Operator mixing for string states in the D1-D5 CFT near the orbifold point". Phys. Rev. D. 87 (10): 106001. arXiv: 1211.6699 . Bibcode:2013PhRvD..87j6001B. doi:10.1103/PhysRevD.87.106001. S2CID   119277282.{{cite journal}}: CS1 maint: multiple names: authors list (link)