Spherical multipole moments

Last updated

In physics, spherical multipole moments are the coefficients in a series expansion of a potential that varies inversely with the distance R to a source, i.e., as  Examples of such potentials are the electric potential, the magnetic potential and the gravitational potential.

Contents

For clarity, we illustrate the expansion for a point charge, then generalize to an arbitrary charge density Through this article, the primed coordinates such as refer to the position of charge(s), whereas the unprimed coordinates such as refer to the point at which the potential is being observed. We also use spherical coordinates throughout, e.g., the vector has coordinates where is the radius, is the colatitude and is the azimuthal angle.

Spherical multipole moments of a point charge

Figure 1: Definitions for the spherical multipole expansion Spherical multipoles.png
Figure 1: Definitions for the spherical multipole expansion

The electric potential due to a point charge located at is given by

where is the distance between the charge position and the observation point and is the angle between the vectors and . If the radius of the observation point is greater than the radius of the charge, we may factor out 1/r and expand the square root in powers of using Legendre polynomials

This is exactly analogous to the axial multipole expansion.

We may express in terms of the coordinates of the observation point and charge position using the spherical law of cosines (Fig. 2)

Figure 2: Angles between the unit vectors
z
^
{\displaystyle \mathbf {\hat {z}} }
(the coordinate axis),
r
^
{\displaystyle \mathbf {\hat {r}} }
(the observation point) and
r
^
'
{\displaystyle \mathbf {{\hat {r}}'} }
(the charge position). Spherical multipole angles.png
Figure 2: Angles between the unit vectors (the coordinate axis), (the observation point) and (the charge position).

Substituting this equation for into the Legendre polynomials and factoring the primed and unprimed coordinates yields the important formula known as the spherical harmonic addition theorem

where the functions are the spherical harmonics. Substitution of this formula into the potential yields

which can be written as

where the multipole moments are defined

As with axial multipole moments, we may also consider the case when the radius of the observation point is less than the radius of the charge. In that case, we may write

which can be written as

where the interior spherical multipole moments are defined as the complex conjugate of irregular solid harmonics

The two cases can be subsumed in a single expression if and are defined to be the lesser and greater, respectively, of the two radii and ; the potential of a point charge then takes the form, which is sometimes referred to as Laplace expansion

Exterior spherical multipole moments

It is straightforward to generalize these formulae by replacing the point charge with an infinitesimal charge element and integrating. The functional form of the expansion is the same. In the exterior case, where , the result is:

where the general multipole moments are defined

Note

The potential Φ(r) is real, so that the complex conjugate of the expansion is equally valid. Taking of the complex conjugate leads to a definition of the multipole moment which is proportional to Yℓm, not to its complex conjugate. This is a common convention, see molecular multipoles for more on this.

Interior spherical multipole moments

Similarly, the interior multipole expansion has the same functional form. In the interior case, where , the result is:

with the interior multipole moments defined as

Interaction energies of spherical multipoles

A simple formula for the interaction energy of two non-overlapping but concentric charge distributions can be derived. Let the first charge distribution be centered on the origin and lie entirely within the second charge distribution . The interaction energy between any two static charge distributions is defined by

The potential of the first (central) charge distribution may be expanded in exterior multipoles

where represents the exterior multipole moment of the first charge distribution. Substitution of this expansion yields the formula

Since the integral equals the complex conjugate of the interior multipole moments of the second (peripheral) charge distribution, the energy formula reduces to the simple form

For example, this formula may be used to determine the electrostatic interaction energies of the atomic nucleus with its surrounding electronic orbitals. Conversely, given the interaction energies and the interior multipole moments of the electronic orbitals, one may find the exterior multipole moments (and, hence, shape) of the atomic nucleus.

Special case of axial symmetry

The spherical multipole expansion takes a simple form if the charge distribution is axially symmetric (i.e., is independent of the azimuthal angle ). By carrying out the integrations that define and , it can be shown the multipole moments are all zero except when . Using the mathematical identity

the exterior multipole expansion becomes

where the axially symmetric multipole moments are defined

In the limit that the charge is confined to the -axis, we recover the exterior axial multipole moments.

Similarly the interior multipole expansion becomes

where the axially symmetric interior multipole moments are defined

In the limit that the charge is confined to the -axis, we recover the interior axial multipole moments.

See also

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

<span class="mw-page-title-main">Legendre polynomials</span> System of complete and orthogonal polynomials

In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a vast number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. A list of the spherical harmonics is available in Table of spherical harmonics.

<span class="mw-page-title-main">Particle in a spherically symmetric potential</span> Quantum mechanical model

In quantum mechanics, a particle in a spherically symmetric potential is a system with a potential that depends only on the distance between the particle and a center. A particle in a spherically symmetric potential can be used as an approximation, for example, of the electron in a hydrogen atom or of the formation of chemical bonds.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

A multipole expansion is a mathematical series representing a function that depends on angles—usually the two angles used in the spherical coordinate system for three-dimensional Euclidean space, . Similarly to Taylor series, multipole expansions are useful because oftentimes only the first few terms are needed to provide a good approximation of the original function. The function being expanded may be real- or complex-valued and is defined either on , or less often on for some other .

In probability and statistics, a circular distribution or polar distribution is a probability distribution of a random variable whose values are angles, usually taken to be in the range [0, 2π). A circular distribution is often a continuous probability distribution, and hence has a probability density, but such distributions can also be discrete, in which case they are called circular lattice distributions. Circular distributions can be used even when the variables concerned are not explicitly angles: the main consideration is that there is not usually any real distinction between events occurring at the opposite ends of the range, and the division of the range could notionally be made at any point.

<span class="mw-page-title-main">Arc length</span> Distance along a curve

Arc length is the distance between two points along a section of a curve.

The method of image charges is a basic problem-solving tool in electrostatics. The name originates from the replacement of certain elements in the original layout with imaginary charges, which replicates the boundary conditions of the problem.

<span class="mw-page-title-main">Axial multipole moments</span>

Axial multipole moments are a series expansion of the electric potential of a charge distribution localized close to the origin along one Cartesian axis, denoted here as the z-axis. However, the axial multipole expansion can also be applied to any potential or field that varies inversely with the distance to the source, i.e., as . For clarity, we first illustrate the expansion for a single point charge, then generalize to an arbitrary charge density localized to the z-axis.

<span class="mw-page-title-main">Pendulum (mechanics)</span> Free swinging suspended body

A pendulum is a body suspended from a fixed support so that it swings freely back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging it back and forth. The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allow the equations of motion to be solved analytically for small-angle oscillations.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In physics, the Laplace expansion of potentials that are directly proportional to the inverse of the distance, such as Newton's gravitational potential or Coulomb's electrostatic potential, expresses them in terms of the spherical Legendre polynomials. In quantum mechanical calculations on atoms the expansion is used in the evaluation of integrals of the inter-electronic repulsion.

In physics and mathematics, the solid harmonics are solutions of the Laplace equation in spherical polar coordinates, assumed to be (smooth) functions . There are two kinds: the regular solid harmonics, which are well-defined at the origin and the irregular solid harmonics, which are singular at the origin. Both sets of functions play an important role in potential theory, and are obtained by rescaling spherical harmonics appropriately:

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

<span class="mw-page-title-main">Potential flow around a circular cylinder</span> Classical solution for inviscid, incompressible flow around a cyclinder

In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a potential flow. Unlike a real fluid, this solution indicates a net zero drag on the body, a result known as d'Alembert's paradox.

Multipole radiation is a theoretical framework for the description of electromagnetic or gravitational radiation from time-dependent distributions of distant sources. These tools are applied to physical phenomena which occur at a variety of length scales - from gravitational waves due to galaxy collisions to gamma radiation resulting from nuclear decay. Multipole radiation is analyzed using similar multipole expansion techniques that describe fields from static sources, however there are important differences in the details of the analysis because multipole radiation fields behave quite differently from static fields. This article is primarily concerned with electromagnetic multipole radiation, although the treatment of gravitational waves is similar.

Partial-wave analysis, in the context of quantum mechanics, refers to a technique for solving scattering problems by decomposing each wave into its constituent angular-momentum components and solving using boundary conditions.

In physics and engineering, the radiative heat transfer from one surface to another is the equal to the difference of incoming and outgoing radiation from the first surface. In general, the heat transfer between surfaces is governed by temperature, surface emissivity properties and the geometry of the surfaces. The relation for heat transfer can be written as an integral equation with boundary conditions based upon surface conditions. Kernel functions can be useful in approximating and solving this integral equation.