Stages of death

Last updated

The stages of death of a human being have medical, biochemical and legal aspects. The term taphonomy from palaeontology applies to the fate of all kinds of remains of organisms. Forensic taphonomy is concerned with remains of the human body. [1]

Contents

History

The academic study of death is called thanatology, a field pioneered by Élie Metchnikoff in the early 20th century. Thanatology focuses on describing postmortem bodily modifications, as well as perspectives concerning psychosocial, medical, ethical, and spiritual aspects of death.

Definition of death

Prior to the 1980s, the legal standard defined death as the absence of cardiopulmonary function including the loss of all vital signs. [2] However, as medical technology advanced, there were situations where one might lose brain function and maintain cardiopulmonary function. [3] This led the American Medical Association, the American Bar Association in collaboration with the National Conference of Commissioners on Uniform State Laws to come together in the 1980s to expand the definition of death through the Uniform Determination of Death Act (UDDA). [3] Under this law, death can be defined as the loss of cardiopulmonary function or the loss of brain function including the brainstem and cortex.

Clinical signs and stages of death

Signs of death or strong indications that a warm-blooded animal is no longer alive are:

The heart and lungs are vital organs for human life due to their ability to properly oxygenate human blood (lungs) and distribute this blood to all vital organs (heart). Hence failure of the heart to pump blood or the lungs to obtain oxygen can lead to a cardiopulmonary death where the heart stops pumping and there is no pulse. In the brain, this can be manifested by a hypoxic state which leads to cerebral edema and thus an increase in intracranial pressure. The rise in intracranial pressure can lead to further disruption in cerebral blood flow, leading to necrosis or tissue death. [4] The aforementioned mechanism is the most common cause of brain death, however this increase in intracranial pressure does not always occur due to an arrest in cardiopulmonary function. [5] Traumatic brain injuries and subarachnoid hemorrhages can also increase the intracranial pressure in the brain leading to a cessation of brain function and hence death. [6] While cardiopulmonary death can be easily assessed by looking for the presence of a pulse, or identifying electrical activity through EKG tracings, assessment of brain death is slightly more nuanced.  Per the United Kingdom Medical Royal Colleges, a diagnosis of brain death is a two-fold process including 1) identifying the cause of irreversible brain damage and excluding reversible causes of brain damage and 2) conducting a series of clinical and laboratory tests to assess brain stem function. [7] [8]

The definition of legal death, and its formal documentation in a death certificate, vary according to the jurisdiction. The certification applies to somatic death, corresponding to death of the person, which has varying definitions but most commonly describes a lack of vital signs and brain function. [9] Death at the level of cells, called molecular death or cell death, follows a matter of hours later. [10] These distinctions, and the independence of physicians certifying legal death, are significant in organ procurement. [11]

Post-mortem changes

Timeline of postmortem changes (stages of death). Postmortem interval changes (stages of death).png
Timeline of postmortem changes (stages of death).
An example of postmortem corneal opacity. Postmortem changes of the eye.jpg
An example of postmortem corneal opacity.

Post-mortem changes refer to the series of changes that occur to a body after death. These changes can generally be divided between early post-mortem changes and late post-mortem changes (also known as decomposition). [12] These changes occur along a continuum and can be helpful in determining the post-mortem interval, which is the time between death and examination.

The stages that follow shortly after death are:

Of these, with obvious mortal damage to the body, the textbook conclusive signs of death clear to a lay person are: algor mortis, rigor mortis, livor mortis, and putrefaction. [13]

The cardinal signs of death may refer to the ending of breathing, heartbeat and circulation, or to algor mortis, livor mortis and rigor mortis; the adoption of brain death as a definition has lessened the centrality of these signs. [14] [12] In a clearer contemporary terminology, algor mortis, livor mortis and rigor mortis are called "early postmortem" changes, in distinction from the "immediate postmortem" changes associated with the cessation of bodily functions, as indicated by vital signs. [15] With an ophthalmoscope, changes to the blood in the retina are quickly visible. [16]

Those stages are followed, in taphonomy, by

Decomposition stages

Descriptions of decomposition have had varying numbers of discrete stages. A 5-stage process developed by Galloway and colleagues that is commonly used in forensic pathology is detailed below: [17] [18]

See also

Related Research Articles

<span class="mw-page-title-main">Death</span> Irreversible cessation of all biological functions that sustain an organism

Death is the irreversible cessation of all biological functions that sustain a living organism. The remains of a former organism normally begin to decompose shortly after death. Death eventually and inevitably occurs in all organisms. Some organisms, such as Turritopsis dohrnii, are biologically immortal, however they can still die from means other than aging. Death is generally applied to whole organisms; the equivalent for individual components of an organism, such as cells or tissues, is necrosis. Something that is not considered an organism, such as a virus, can be physically destroyed but is not said to die, as a virus is not considered alive in the first place.

<span class="mw-page-title-main">Forensic entomology</span> Application of insect and other arthropod biology to forensics

Forensic entomology is a field of forensic science that uses insects found on corpses to help solve criminal cases. This includes the study of insect types commonly associated with cadavers, their respective life cycles, their ecological presences in a given environment, as well as the changes in insect assemblage with the progression of decomposition. Insect succession patterns are identified based on the time a given species of insect spends in a given developmental stage, and how many generations have been produced since the insects introduction to a given food source. Insect development alongside environmental data such as temperature and vapor density, can be used to estimate the time since death, due to the fact that flying insects are attracted to a body immediately after death, determine any possible movement of the body after death, and the determination of antemortem trauma.. The identification of postmortem interval to aid in death investigations is the primary scope of this scientific field. However, forensic entomology is not limited to homicides, it has also been used in cases of neglect and abuse, in toxicology contexts to detect the presence of drugs, and in dry shelf food contamination incidents. Equally, insect assemblages present on a body, can be used to approximate a given location, as certain insects may be unique to certain areas. Therefore, forensic entomology can be divided into three subfields: urban, stored-product and medico-legal/medico-criminal entomology.

Rigor mortis, or postmortem rigidity, is the fourth stage of death. It is one of the recognizable signs of death, characterized by stiffening of the limbs of the corpse caused by chemical changes in the muscles postmortem. In humans, rigor mortis can occur as soon as four hours after death. Contrary to folklore and common belief, rigor mortis is not permanent and begins to pass within hours of onset. Typically, it lasts no longer than eight hours at "room temperature".

<span class="mw-page-title-main">Livor mortis</span> Settling of the blood in the lower, or dependent, portion of the body postmortem

Livor mortis, postmortem lividity, hypostasis or suggillation, is the second stage of death and one of the signs of death. It is a settling of the blood in the lower, or dependent, portion of the body postmortem, causing a purplish red discoloration of the skin. When the heart stops functioning and is no longer agitating the blood, heavy red blood cells sink through the serum by action of gravity. The blood travels faster in warmer conditions and slower in colder conditions.

<span class="mw-page-title-main">Decomposition</span> Process in which organic substances are broken down into simpler organic matter

Decomposition or rot is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and is essential for recycling the finite matter that occupies physical space in the biosphere. Bodies of living organisms begin to decompose shortly after death. Animals, such as earthworms, also help decompose the organic materials. Organisms that do this are known as decomposers or detritivores. Although no two organisms decompose in the same way, they all undergo the same sequential stages of decomposition. The science which studies decomposition is generally referred to as taphonomy from the Greek word taphos, meaning tomb. Decomposition can also be a gradual process for organisms that have extended periods of dormancy.

Putrefaction is the fifth stage of death, following pallor mortis, livor mortis, algor mortis, and rigor mortis. This process references the breaking down of a body of an animal post-mortem. In broad terms, it can be viewed as the decomposition of proteins, and the eventual breakdown of the cohesiveness between tissues, and the liquefaction of most organs. This is caused by the decomposition of organic matter by bacterial or fungal digestion, which causes the release of gases that infiltrate the body's tissues, and leads to the deterioration of the tissues and organs. The approximate time it takes putrefaction to occur is dependent on various factors. Internal factors that affect the rate of putrefaction include the age at which death has occurred, the overall structure and condition of the body, the cause of death, and external injuries arising before or after death. External factors include environmental temperature, moisture and air exposure, clothing, burial factors, and light exposure. Body farms are facilities that study the way various factors affect the putrefaction process.

Algor mortis, the third stage of death, is the change in body temperature post mortem, until the ambient temperature is matched. This is generally a steady decline, although if the ambient temperature is above the body temperature, the change in temperature will be positive, as the (relatively) cooler body acclimates to the warmer environment. External factors can have a significant influence.

<span class="mw-page-title-main">Forensic anthropology</span> Application of the science of anthropology in a legal setting

Forensic anthropology is the application of the anatomical science of anthropology and its various subfields, including forensic archaeology and forensic taphonomy, in a legal setting. A forensic anthropologist can assist in the identification of deceased individuals whose remains are decomposed, burned, mutilated or otherwise unrecognizable, as might happen in a plane crash. Forensic anthropologists are also instrumental in the investigation and documentation of genocide and mass graves. Along with forensic pathologists, forensic dentists, and homicide investigators, forensic anthropologists commonly testify in court as expert witnesses. Using physical markers present on a skeleton, a forensic anthropologist can potentially determine a person's age, sex, stature, and race. In addition to identifying physical characteristics of the individual, forensic anthropologists can use skeletal abnormalities to potentially determine cause of death, past trauma such as broken bones or medical procedures, as well as diseases such as bone cancer.

Dead on arrival (DOA), also dead in the field, brought in dead (BID), or dead right there (DRT) are terms which indicate that a patient was found to be already clinically dead upon the arrival of professional medical assistance, often in the form of first responders such as emergency medical technicians, paramedics, firefighters, or police.

Coffin birth, also known as postmortem fetal extrusion, is the expulsion of a nonviable fetus through the vaginal opening of the decomposing body of a deceased pregnant woman due to increasing pressure from intra-abdominal gases. This kind of postmortem delivery occurs very rarely during the decomposition of a body. The practice of chemical preservation, whereby chemical preservatives and disinfectant solutions are pumped into a body to replace natural body fluids, have made the occurrence of "coffin birth" so rare that the topic is rarely mentioned in international medical discourse.

<span class="mw-page-title-main">Post-mortem interval</span> Time that has elapsed since a person has died

The post-mortem interval (PMI) is the time that has elapsed since an individual's death. When the time of death is not known, the interval may be estimated, and so an approximate time of death established. Postmortem interval estimations can range from hours, to days or even years depending on the type of evidence present. There are standard medical and scientific techniques supporting such an estimation.

Cadaveric spasm, also known as postmortem spasm, instantaneous rigor mortis, cataleptic rigidity, or instantaneous rigidity, is a rare form of muscular stiffening that occurs at the moment of death and persists into the period of rigor mortis. Cadaveric spasm can be distinguished from rigor mortis as the former is a stronger stiffening of the muscles that cannot be easily undone, while rigor mortis can.

Forensic entomological decomposition is how insects decompose and what that means for timing and information in criminal investigations. Medicolegal entomology is a branch of forensic entomology that applies the study of insects to criminal investigations, and is commonly used in death investigations for estimating the post-mortem interval (PMI). One method of obtaining this estimate uses the time and pattern of arthropod colonization. This method will provide an estimation of the period of insect activity, which may or may not correlate exactly with the time of death. While insect successional data may not provide as accurate an estimate during the early stages of decomposition as developmental data, it is applicable for later decompositional stages and can be accurate for periods up to a few years.

<span class="mw-page-title-main">Microbiology of decomposition</span>

Microbiology of decomposition is the study of all microorganisms involved in decomposition, the chemical and physical processes during which organic matter is broken down and reduced to its original elements.

Decomposition in animals is a process that begins immediately after death and involves the destruction of soft tissue, leaving behind skeletonized remains. The chemical process of decomposition is complex and involves the breakdown of soft tissue, as the body passes through the sequential stages of decomposition. Autolysis and putrefaction also play major roles in the disintegration of cells and tissues.

Postmortem caloricity is a phenomenon where the body temperature of a corpse rises or remains unusually high for up to 2 hours after death instead of falling.

Post-mortem chemistry, also called necrochemistry or death chemistry, is a subdiscipline of chemistry in which the chemical structures, reactions, processes and parameters of a dead organism is investigated. Post-mortem chemistry plays a significant role in forensic pathology. Biochemical analyses of vitreous humor, cerebrospinal fluid, blood and urine is important in determining the cause of death or in elucidating forensic cases.

<span class="mw-page-title-main">Thanatotranscriptome</span> Part of the genome still active in the time immediately following death

The thanatotranscriptome denotes all RNA transcripts produced from the portions of the genome still active or awakened in the internal organs of a body following its death. It is relevant to the study of the biochemistry, microbiology, and biophysics of thanatology, in particular within forensic science. Some genes may continue to be expressed in cells for up to 48 hours after death, producing new mRNA. Certain genes that are generally inhibited since the end of fetal development may be expressed again at this time.

The necrobiome has been defined as the community of species associated with decaying corpse remains. The process of decomposition is complex. Microbes decompose cadavers, but other organisms including fungi, nematodes, insects, and larger scavenger animals also contribute. Once the immune system is no longer active, microbes colonizing the intestines and lungs decompose their respective tissues and then travel throughout the body via the blood and lymphatic systems to break down other tissue and bone. During this process, gases are released as a by-product and accumulate, causing bloating. Eventually, the gases seep through the body's wounds and natural openings, providing a way for some microbes to exit from the inside of the cadaver and inhabit the outside. The microbial communities colonizing the internal organs of a cadaver are referred to as the thanatomicrobiome. The region outside of the cadaver that is exposed to the external environment is referred to as the epinecrotic portion of the necrobiome, and is especially important when determining the time and location of death for an individual. Different microbes play specific roles during each stage of the decomposition process. The microbes that will colonize the cadaver and the rate of their activity are determined by the cadaver itself and the cadaver's surrounding environmental conditions.

<span class="mw-page-title-main">Corpse decomposition</span> Process in which animal bodies break down

Decomposition is the process in which the organs and complex molecules of animal and human bodies break down into simple organic matter over time. In vertebrates, five stages of decomposition are typically recognized: fresh, bloat, active decay, advanced decay, and dry/skeletonized. Knowing the different stages of decomposition can help investigators in determining the post-mortem interval (PMI). The rate of decomposition of human remains can vary due to environmental factors and other factors. Environmental factors include temperature, burning, humidity, and the availability of oxygen. Other factors include body size, clothing, and the cause of death.

References

  1. Sorg, Marcella H.; Haglund, William D. (13 December 1996). Forensic Taphonomy: The Postmortem Fate of Human Remains. CRC Press. p. 13. ISBN   978-1-4398-2192-3.
  2. Sarbey, Ben (1 December 2016). "Definitions of death: brain death and what matters in a person". Journal of Law and the Biosciences. 3 (3): 743–752. doi:10.1093/jlb/lsw054. ISSN   2053-9711. PMC   5570697 . PMID   28852554.
  3. 1 2 Smit, Hans (1962). "The Uniform Interstate and International Procedure Act Approved by the National Conference of Commissioners on Uniform State Laws: A New Era Commences". The American Journal of Comparative Law. 11 (3): 415–417. doi: 10.2307/838593 . ISSN   0002-919X. JSTOR   838593.
  4. Machado, Calixto (25 February 2010). "Diagnosis of brain death". Neurology International. 2 (1): 2. doi:10.4081/ni.2010.e2. ISSN   2035-8377. PMC   3093212 . PMID   21577338.
  5. Spinello, Irene M. (September 2015). "Brain Death Determination". Journal of Intensive Care Medicine. 30 (6): 326–337. doi:10.1177/0885066613511053. ISSN   0885-0666. PMID   24227449. S2CID   39103031.
  6. Wijdicks, Eelco F.M. (May 1995). "Determining brain death in adults [RETIRED]". Neurology. 45 (5): 1003–1011. doi: 10.1212/wnl.45.5.1003 . ISSN   0028-3878. PMID   7746373.
  7. "Diagnosis of death. Memorandum issued by the honorary secretary of the Conference of Medical Royal Colleges and their Faculties in the United Kingdom on 15 January 1979". BMJ. 1 (6159): 332. 3 February 1979. doi:10.1136/bmj.1.6159.332. ISSN   0959-8138. PMC   1597667 . PMID   421104.
  8. "Diagnosis of brain death. Statement issued by the honorary secretary of the Conference of Medical Royal Colleges and their Faculties in the United Kingdom on 11 October 1976". BMJ. 2 (6045): 1187–1188. 13 November 1976. doi:10.1136/bmj.2.6045.1187. ISSN   0959-8138. PMC   1689565 . PMID   990836.
  9. Shedge, Rutwik; Krishan, Kewal; Warrier, Varsha; Kanchan, Tanuj (2021), "Postmortem Changes", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID   30969563 , retrieved 13 September 2021
  10. Bardale, Rajesh (October 2011). Principles of Forensic Medicine & Toxicology. Wife Goes On. p. 133. ISBN   978-93-5025-493-6.
  11. Peitzman, Andrew B.; Rhodes, Michael; Schwab, C. William (2008). The Trauma Manual: Trauma and Acute Care Surgery. Lippincott Williams & Wilkins. p. 415. ISBN   978-0-7817-6275-5.
  12. 1 2 Prahlow, Joseph A. (10 March 2010). Forensic Pathology for Police, Death Investigators, Attorneys, and Forensic Scientists. Springer Science & Business Media. p. 163. ISBN   978-1-59745-404-9.
  13. Pollak, Andrew N.; Browner, Bruce D.; Surgeons, American Academy of Orthopaedic (2002). Emergency Care and Transportation of the Sick and Injured. Jones & Bartlett Learning. p. 19. ISBN   978-0-7637-2046-9.
  14. Fox, Renée C. (1981). "The Sting of Death in American Society". Social Service Review. 55 (1): 47–48. doi:10.1086/643890. ISSN   0037-7961. JSTOR   30011444. PMID   10250829. S2CID   33834100.
  15. Almulhim, Abdulaziz M.; Menezes, Ritesh G. (2020). "Evaluation of Postmortem Changes". StatPearls. StatPearls Publishing. PMID   32119351.
  16. Saukko, Pekka; Knight, Bernard (4 November 2015). Knight's Forensic Pathology. CRC Press. p. 57. ISBN   978-1-4441-6508-1.
  17. Wescott, Daniel J. (13 August 2018). "Recent advances in forensic anthropology: decomposition research". Forensic Sciences Research. 3 (4): 327–342. doi:10.1080/20961790.2018.1488571. ISSN   2096-1790. PMC   6374978 . PMID   30788450.
  18. Forensic taphonomy : the postmortem fate of human remains. William D. Haglund, Marcella H. Sorg. Boca Raton: CRC Press. 1997. ISBN   0-8493-9434-1. OCLC   35236386.{{cite book}}: CS1 maint: others (link)