Structural pattern

Last updated

In software engineering, structural design patterns are design patterns that ease the design by identifying a simple way to realize relationships among entities.

Examples of Structural Patterns include:

See also

Related Research Articles

In object-oriented programming, a class is an extensible program-code-template for creating objects, providing initial values for state and implementations of behavior.

<i>Design Patterns</i> 1994 software engineering book

Design Patterns: Elements of Reusable Object-Oriented Software (1994) is a software engineering book describing software design patterns. The book was written by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, with a foreword by Grady Booch. The book is divided into two parts, with the first two chapters exploring the capabilities and pitfalls of object-oriented programming, and the remaining chapters describing 23 classic software design patterns. The book includes examples in C++ and Smalltalk.

<span class="mw-page-title-main">Abstract factory pattern</span> Software design pattern

The abstract factory pattern in software engineering is a design pattern that provides a way to create families of related objects without imposing their concrete classes, by encapsulating a group of individual factories that have a common theme without specifying their concrete classes. According to this pattern, a client software component creates a concrete implementation of the abstract factory and then uses the generic interface of the factory to create the concrete objects that are part of the family. The client does not know which concrete objects it receives from each of these internal factories, as it uses only the generic interfaces of their products. This pattern separates the details of implementation of a set of objects from their general usage and relies on object composition, as object creation is implemented in methods exposed in the factory interface.

In software engineering, the adapter pattern is a software design pattern that allows the interface of an existing class to be used as another interface. It is often used to make existing classes work with others without modifying their source code.

The facade pattern is a software-design pattern commonly used in object-oriented programming. Analogous to a facade in architecture, a facade is an object that serves as a front-facing interface masking more complex underlying or structural code. A facade can:

The bridge pattern is a design pattern used in software engineering that is meant to "decouple an abstraction from its implementation so that the two can vary independently", introduced by the Gang of Four. The bridge uses encapsulation, aggregation, and can use inheritance to separate responsibilities into different classes.

In software engineering, the composite pattern is a partitioning design pattern. The composite pattern describes a group of objects that are treated the same way as a single instance of the same type of object. The intent of a composite is to "compose" objects into tree structures to represent part-whole hierarchies. Implementing the composite pattern lets clients treat individual objects and compositions uniformly.

In object-oriented programming, the decorator pattern is a design pattern that allows behavior to be added to an individual object, dynamically, without affecting the behavior of other instances of the same class. The decorator pattern is often useful for adhering to the Single Responsibility Principle, as it allows functionality to be divided between classes with unique areas of concern as well as to the Open-Closed Principle, by allowing the functionality of a class to be extended without being modified. Decorator use can be more efficient than subclassing, because an object's behavior can be augmented without defining an entirely new object.

In computer programming, the proxy pattern is a software design pattern. A proxy, in its most general form, is a class functioning as an interface to something else. The proxy could interface to anything: a network connection, a large object in memory, a file, or some other resource that is expensive or impossible to duplicate. In short, a proxy is a wrapper or agent object that is being called by the client to access the real serving object behind the scenes. Use of the proxy can simply be forwarding to the real object, or can provide additional logic. In the proxy, extra functionality can be provided, for example caching when operations on the real object are resource intensive, or checking preconditions before operations on the real object are invoked. For the client, usage of a proxy object is similar to using the real object, because both implement the same interface.

In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.

In computer programming, the strategy pattern is a behavioral software design pattern that enables selecting an algorithm at runtime. Instead of implementing a single algorithm directly, code receives runtime instructions as to which in a family of algorithms to use.

In software engineering, a design pattern describes a relatively small, well-defined aspect of a computer program in terms of how to write the code.

In computer programming, duck typing is an application of the duck test—"If it walks like a duck and it quacks like a duck, then it must be a duck"—to determine whether an object can be used for a particular purpose. With nominative typing, an object is of a given type if it is declared as such. With duck typing, an object is of a given type if it has all methods and properties required by that type. Duck typing may be viewed as a usage-based structural equivalence between a given object and the requirements of a type.

In computer programming, an opaque pointer is a special case of an opaque data type, a data type declared to be a pointer to a record or data structure of some unspecified type.

In object-oriented design, the dependency inversion principle is a specific methodology for loosely coupled software modules. When following this principle, the conventional dependency relationships established from high-level, policy-setting modules to low-level, dependency modules are reversed, thus rendering high-level modules independent of the low-level module implementation details. The principle states:

ITK is a cross-platform, open-source application development framework widely used for the development of image segmentation and image registration programs. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with an MRI scan in order to combine the information contained in both.

<span class="mw-page-title-main">Go (programming language)</span> Programming language

Go is a statically typed, compiled high-level programming language designed at Google by Robert Griesemer, Rob Pike, and Ken Thompson. It is syntactically similar to C, but also has memory safety, garbage collection, structural typing, and CSP-style concurrency. It is often referred to as Golang because of its former domain name, golang.org, but its proper name is Go.

<span class="mw-page-title-main">Object-oriented programming</span> Programming paradigm based on the concept of objects

Object-oriented programming (OOP) is a programming paradigm based on the concept of objects, which can contain data and code: data in the form of fields, and code in the form of procedures. In OOP, computer programs are designed by making them out of objects that interact with one another.

The hexagonal architecture, or ports and adapters architecture, is an architectural pattern used in software design. It aims at creating loosely coupled application components that can be easily connected to their software environment by means of ports and adapters. This makes components exchangeable at any level and facilitates test automation.

Pattern-Oriented Software Architecture is a series of software engineering books describing software design patterns.

References

  1. "Adapter Pipeline". Cunningham & Cunningham, Inc. 2010-12-31. Archived from the original on 2010-12-31. Retrieved 2012-07-20.
  2. BobbyWoolf (2002-06-19). "Retrofit Interface Pattern". Cunningham & Cunningham, Inc. Archived from the original on 2002-06-19. Retrieved 2012-07-20.
  3. MartinZarate (2010-12-31). "External Polymorphism". Cunningham & Cunningham, Inc. Archived from the original on 2010-12-31. Retrieved 2012-07-20.
  4. "Tomb Stone". Cunningham & Cunningham, Inc. 2007-06-17. Archived from the original on 2007-06-17. Retrieved 2012-07-20.