Tricycle landing gear

Last updated

A Mooney M20J with a retractable tricycle landing gear Mooney.m20j.g-muni.arp.jpg
A Mooney M20J with a retractable tricycle landing gear
Polish 3Xtrim 3X55 Trener with a fixed tricycle landing gear taxiing. 3Xtrim3X55TrainerC-IFUF66.jpg
Polish 3Xtrim 3X55 Trener with a fixed tricycle landing gear taxiing.

Tricycle gear is a type of aircraft undercarriage, or landing gear, arranged in a tricycle fashion. The tricycle arrangement has a single nose wheel in the front, and two or more main wheels slightly aft of the center of gravity. Tricycle gear aircraft are the easiest for takeoff, landing and taxiing, and consequently the configuration is the most widely used on aircraft. [1] [2]

Contents

History

Several early aircraft had primitive tricycle gear, notably very early Antoinette planes and the Curtiss Pushers of the pre-World War I Pioneer Era of aviation. Waldo Waterman's 1929 tailless Whatsit was one of the first to have a steerable nose wheel. [3]

In 1956, Cessna introduced sprung-steel tricycle landing gear on the Cessna 172. Their marketing department described this as "Land-O-Matic" to imply that these aircraft were much easier to land than tailwheel aircraft. [4]

Tricycle gear and taildraggers compared

Tricycle gear is essentially the reverse of conventional landing gear or taildragger. On the ground, tricycle aircraft have a visibility advantage for the pilot as the nose of the aircraft is level, whereas the high nose of the taildragger can block the view ahead. Tricycle gear aircraft are much less liable to 'nose over' as can happen if a taildragger hits a bump or has the brakes heavily applied. In a nose-over, the aircraft's tail rises and the propeller strikes the ground, causing damage. The tricycle layout reduces the possibility of a ground loop, because the main gear lies behind the center of mass. However, tricycle aircraft can be susceptible to wheel-barrowing. The nosewheel equipped aircraft also is easier to handle on the ground in high winds due to its wing negative angle of attack. Student pilots are able to safely master nosewheel equipped aircraft more quickly. [2]

Tricycle gear aircraft are easier to land because the attitude required to land on the main gear is the same as that required in the flare, and they are less vulnerable to crosswinds. As a result, the majority of modern aircraft are fitted with tricycle gear. Almost all jet-powered aircraft have been fitted with tricycle landing gear to prevent the blast of hot, high-speed gases from causing damage to the ground surface, in particular runways and taxiways. The few exceptions have included the Yakovlev Yak-15, the Supermarine Attacker, and prototypes such as the Heinkel He 178 that pioneered jet flight, the first four prototypes (V1 through V4) of the Messerschmitt Me 262, and the Nene powered version of the Vickers VC.1 Viking. Outside of the United States – where the tricycle undercarriage had solidly begun to take root with its aircraft firms before that nation's World War II involvement at the end of 1941  – the Heinkel firm in World War II Germany began building airframe designs meant to use tricycle undercarriage systems from their beginnings, as early as late 1939 with the Heinkel He 280 pioneering jet fighter demonstrator series, and the unexpectedly successful Heinkel He 219 twin-engined night fighter of 1942 origin. [5]

A Cessna 150 taildragger. Cessna150taildraggerC-GOCB02.jpg
A Cessna 150 taildragger.

The taildragger configuration has its own advantages, and is arguably more suited to rougher landing strips. The tailwheel makes the plane sit naturally in a nose-up attitude when on the ground, which is useful for operations on unpaved gravel surfaces where debris could damage the propeller. The tailwheel also transmits loads to the airframe in a way much less likely to cause airframe damage when operating on rough fields. The small tailwheel is much lighter and much less vulnerable than a nosewheel. Also, a fixed-gear taildragger exhibits less interference drag and form drag in flight than a fixed-gear tricycle aircraft whose nosewheel may sit directly in the propeller's slipstream. Tailwheels are smaller and cheaper to buy and to maintain. Most tailwheel aircraft are lower in overall height and thus may fit in lower hangars. Tailwheel aircraft are also more suitable for fitting with skis in wintertime. [2]

Related Research Articles

<span class="mw-page-title-main">Heinkel He 219</span> German night fighter of World War II

The Heinkel He 219 Uhu ("Eagle-Owl") is a night fighter that served with the German Luftwaffe in the later stages of World War II. A relatively sophisticated design, the He 219 possessed a variety of innovations, including Lichtenstein SN-2 advanced VHF-band intercept radar, also used on the Ju 88G and Bf 110G night fighters. It was also the first operational military aircraft to be equipped with ejection seats and the first operational German World War II-era aircraft with tricycle landing gear. Had the Uhu been available in quantity, it might have had a significant effect on the strategic night bombing offensive of the Royal Air Force; however, only 294 of all models were built by the end of the war and these saw only limited service. Ernst-Wilhelm Modrow was the leading night fighter ace on the He 219. Modrow was credited with 33 of his 34 night air victories on the type.

<span class="mw-page-title-main">Landing</span> Transition from being in flight to being on a surface

Landing is the last part of a flight, where a flying animal, aircraft, or spacecraft returns to the ground. When the flying object returns to water, the process is called alighting, although it is commonly called "landing", "touchdown" or "splashdown" as well. A normal aircraft flight would include several parts of flight including taxi, takeoff, climb, cruise, descent and landing.

<span class="mw-page-title-main">Cessna 152</span> Two-seat tricycle gear general aviation airplane

The Cessna 152 is an American two-seat, fixed-tricycle-gear, general aviation airplane, used primarily for flight training and personal use. It was based on the earlier Cessna 150 incorporating a number of minor design changes and a slightly more powerful engine with a longer time between overhaul.

<span class="mw-page-title-main">Landing gear</span> Aircraft component for takeoff and landing and which supports the aircraft while not in the air

Landing gear is the undercarriage of an aircraft or spacecraft that is used for takeoff or landing. For aircraft it is generally needed for both. It was also formerly called alighting gear by some manufacturers, such as the Glenn L. Martin Company. For aircraft, Stinton makes the terminology distinction undercarriage (British) = landing gear (US).

<span class="mw-page-title-main">Heinkel</span> German aircraft manufacturing company (1922–1965)

Heinkel Flugzeugwerke was a German aircraft manufacturing company that was founded by and named after Ernst Heinkel. It is notable for having produced bomber aircraft for the Luftwaffe in World War II and for important contributions to high-speed flight, with the pioneering examples of a successful liquid-fueled rocket and a turbojet-powered aircraft in aviation history, with both Heinkel designs' first flights occurring shortly before the outbreak of World War II in Europe.

<span class="mw-page-title-main">Heinkel He 277</span> German strategic bomber design during WW2.

The Heinkel He 277 was a four-engine, long-range heavy bomber design, originating as a derivative of the He 177, intended for production and use by the German Luftwaffe during World War II. The main difference was in its engines. The He 177 used two Daimler-Benz DB 606 "power system" engines, each of which consisted of two combined Daimler-Benz DB 601 engines, each DB 606 weighed 1.5 tons. The He 177A-3 and its successors used two DB 610 "power system" engines, each of which consisted of two combined Daimler-Benz DB 605 engines, each DB 610 weighed 1.5 tons. Due to problems with both the DB 606 and the DB 610, the He 277 was intended to use four unitized BMW 801E 14-cylinder radial engines, each mounted in an individual nacelle and each turning a three-blade, four-meter diameter propeller.

<span class="mw-page-title-main">Göppingen Gö 9</span> Type of aircraft

The Göppingen Gö 9 was a German research aircraft built to investigate the practicalities of powering a plane using a pusher propeller located far from the engine and turned by a long driveshaft.

<span class="mw-page-title-main">Cessna 150</span> Light, two seat, single engine airplane

The Cessna 150 is a two-seat tricycle gear general aviation airplane that was designed for flight training, touring and personal use. In 1977, it was succeeded in production by the Cessna 152, a minor modification to the original design.

<span class="mw-page-title-main">Ground loop (aviation)</span>

In aviation, a ground loop is a rapid rotation of a fixed-wing aircraft in the horizontal plane (yawing) while on the ground. Aerodynamic forces may cause the advancing wing to rise, which may then cause the other wingtip to touch the ground. In severe cases, the inside wing can dig in, causing the aircraft to swing violently or even cartwheel. In their early gliding experiments, the Wright Brothers referred to this action as well-digging.

<span class="mw-page-title-main">Bush plane</span> Airplane used in remote or underdeveloped areas

A bush airplane is a general aviation aircraft used to provide both scheduled and unscheduled passenger and flight services to remote, undeveloped areas, such as the Canadian north or bush, Alaskan tundra, the African bush, or savanna, Amazon rainforest or the Australian Outback. They are used where ground transportation infrastructure is inadequate or does not exist.

<span class="mw-page-title-main">Conventional landing gear</span> Aircraft undercarriage

Conventional landing gear, or tailwheel-type landing gear, is an aircraft undercarriage consisting of two main wheels forward of the center of gravity and a small wheel or skid to support the tail. The term taildragger is also used, although some argue it should apply only to those aircraft with a tailskid rather than a wheel.

<span class="mw-page-title-main">Piper PA-20 Pacer</span> 1950s American light aircraft

The PA-20 Pacer and PA-22 Tri-Pacer, Caribbean, and Colt are an American family of light strut-braced high-wing monoplane aircraft built by Piper Aircraft from 1949 to 1964.

<span class="mw-page-title-main">UltraFly Model Corporation</span> Former radio controlled aircraft manufacturer in Taiwan, China

UltraFly Model Corporation was a Taiwan-based manufacturer of intermediate and advanced almost ready-to-fly electric radio controlled aircraft whose airframe parts were injection molded from EPS foam. They produced a line of brushless motors and brushless-compatible electronic speed controls as well. The products were distributed worldwide by U.S. based Great Planes of Champaign, Illinois

<span class="mw-page-title-main">Tailstrike</span> Contact of an aircraft tail with the ground or another object causing substantial damage

In aviation, a tailstrike or tail strike occurs when the tail or empennage of an aircraft strikes the ground or other stationary object. This can happen with a fixed-wing aircraft with tricycle undercarriage, in both takeoff where the pilot rotates the nose up too rapidly, or in landing where the pilot raises the nose too sharply during final approach, often in attempting to land too near the runway threshold. It can also happen during helicopter operations close to the ground, when the tail inadvertently strikes an obstacle.

<span class="mw-page-title-main">Messerschmitt P.1101</span> German fighter prototype

The Messerschmitt P.1101 was a single-seat, single-jet fighter project of World War II, developed as part of the 15 July 1944 Emergency Fighter Program which sought a second generation of jet fighters for the Third Reich. A prominent feature of the P.1101 prototype was that the sweep angle of the wings could be changed before flight, a feature further developed in later variable-sweep aircraft such as the Bell X-5 and Grumman XF10F Jaguar.

<span class="mw-page-title-main">Malmö MFI-10 Vipan</span> Type of aircraft

The Malmö MFI-10 Vipan was a four-seat light utility monoplane designed and built in Sweden by Malmö Flygindustri. Only three aircraft were built and the type did not enter quantity production.

<span class="mw-page-title-main">Aviation in World War II</span>

During World War II, aviation firmly established itself as a critical component of modern warfare from the Battle of Britain in the early stages to the great aircraft carrier battles between American and Japanese Pacific fleets and the final delivery of nuclear weapons. The major combatants. Germany and Japan on the one side and Britain, the United States and the USSR on the other manufactured huge air forces which engaged in pitched battles both with each other and with the opposing ground forces. Bombing established itself as a major strategic force, and this was also the first war in which the aircraft carrier played a significant role.

<span class="mw-page-title-main">Waterman Arrowbile</span> Type of aircraft

The Waterman Arrowbile was a tailless, two-seat, single-engine, pusher configuration roadable aircraft built in the US in the late 1930s. One of the first of its kind, it flew safely but generated little customer interest, and only five were produced.

<span class="mw-page-title-main">QAC Quickie Q2</span> American homebuilt aircraft design

The Quickie Q2 or Q2 is a two-seat version of the unique Rutan Quickie, produced in kit form by the Quickie Aircraft Corporation founded by Tom Jewett and Gene Sheehan. Canadian Garry LeGare was involved in the design.

<span class="mw-page-title-main">Lancair Mako</span> American light kit airplane

The Lancair Mako is an American amateur-built aircraft designed and produced by Lancair of Uvalde, Texas, introduced at AirVenture in 2017. The aircraft was first flown on 18 July 2017 and is supplied as a kit for amateur construction. It is named after the shark.

References

  1. Crane, Dale: Dictionary of Aeronautical Terms, third edition, page 524. Aviation Supplies & Academics, 1997. ISBN   1-56027-287-2
  2. 1 2 3 Aviation Publishers Co. Limited, From the Ground Up, page 11 (27th revised edition) ISBN   0-9690054-9-0
  3. Waterman Whatsit
  4. Clarke, Bill (1987). The Cessna 150 and 152. Tab Books. pp. 5, 14. ISBN   978-0-8306-9022-0 . Retrieved 13 October 2022.
  5. Christopher, John (2013). The Race for Hitler's X-Planes: Britain's 1945 Mission to Capture Secret Luftwaffe Technology. The Mill, Gloucestershire UK: History Press. p. 58.