Ultrasonic hearing

Last updated

Ultrasonic hearing is a recognised auditory effect which allows humans to perceive sounds of a much higher frequency than would ordinarily be audible using the inner ear, usually by stimulation of the base of the cochlea through bone conduction. Normal human hearing is recognised as having an upper bound of 15–28  kHz, [1] depending on the person.

Ultrasonic sinusoids as high as 120 kHz have been reported as successfully perceived. Two competing theories are proposed to explain this effect. The first asserts that ultrasonic sounds excite the inner hair cells of the cochlea basal turn, which are responsive to high frequency sounds. [2] The second proposes that ultrasonic signals resonate the brain and are modulated down to frequencies that the cochlea can then detect. [3]

Researchers Tsutomu Oohashi et al. have coined the term hypersonic effect to describe the results of their controversial study supporting audibility of ultrasonics. [4]

By modulating speech signals onto an ultrasonic carrier, intelligible speech has also been perceived with a high degree of clarity, especially in areas of high ambient noise. Deatherage states that what humans experience as ultrasonic perception may have been a necessary precursor in the evolution of echolocation in marine mammals. [5]

See also

Related Research Articles

Ultrasound Sound waves with frequencies above the human hearing range

Ultrasound is sound waves with frequencies higher than the upper audible limit of human hearing. Ultrasound is not different from "normal" (audible) sound in its physical properties, except that humans cannot hear it. This limit varies from person to person and is approximately 20 kilohertz in healthy young adults. Ultrasound devices operate with frequencies from 20 kHz up to several gigahertz.

Pitch (music) Perceptual property in music ordering sounds from low to high

Pitch is a perceptual property of sounds that allows their ordering on a frequency-related scale, or more commonly, pitch is the quality that makes it possible to judge sounds as "higher" and "lower" in the sense associated with musical melodies. Pitch can be determined only in sounds that have a frequency that is clear and stable enough to distinguish from noise. Pitch is a major auditory attribute of musical tones, along with duration, loudness, and timbre.

An audio frequency or audible frequency (AF) is a periodic vibration whose frequency is in the band audible to the average human, the human hearing range. The SI unit of frequency is the hertz (Hz). It is the property of sound that most determines pitch.

Loudness Subjective perception of sound pressure

In acoustics, loudness is the subjective perception of sound pressure. More formally, it is defined as, "That attribute of auditory sensation in terms of which sounds can be ordered on a scale extending from quiet to loud." The relation of physical attributes of sound to perceived loudness consists of physical, physiological and psychological components. The study of apparent loudness is included in the topic of psychoacoustics and employs methods of psychophysics.

Sensorineural hearing loss Hearing loss caused by an inner ear or vestibulocochlear nerve defect

Sensorineural hearing loss (SNHL) is a type of hearing loss in which the root cause lies in the inner ear or sensory organ or the vestibulocochlear nerve. SNHL accounts for about 90% of reported hearing loss. SNHL is usually permanent and can be mild, moderate, severe, profound, or total. Various other descriptors can be used depending on the shape of the audiogram, such as high frequency, low frequency, U-shaped, notched, peaked, or flat.

An otoacoustic emission (OAE) is a sound that is generated from within the inner ear. Having been predicted by Austrian astrophysicist Thomas Gold in 1948, its existence was first demonstrated experimentally by British physicist David Kemp in 1978, and otoacoustic emissions have since been shown to arise through a number of different cellular and mechanical causes within the inner ear. Studies have shown that OAEs disappear after the inner ear has been damaged, so OAEs are often used in the laboratory and the clinic as a measure of inner ear health.

Presbycusis, or age-related hearing loss, is the cumulative effect of aging on hearing. It is a progressive and irreversible bilateral symmetrical age-related sensorineural hearing loss resulting from degeneration of the cochlea or associated structures of the inner ear or auditory nerves. The hearing loss is most marked at higher frequencies. Hearing loss that accumulates with age but is caused by factors other than normal aging is not presbycusis, although differentiating the individual effects of distinct causes of hearing loss can be difficult.

In speech communication, intelligibility is a measure of how comprehensible speech is in given conditions. Intelligibility is affected by the level and quality of the speech signal, the type and level of background noise, reverberation, and, for speech over communication devices, the properties of the communication system. A common standard measurement for the quality of the intelligibility of speech is the Speech Transmission Index (STI). The concept of speech intelligibility is relevant to several fields, including phonetics, human factors, acoustical engineering, and audiometry.

Hearing range range of frequencies that can be heard by humans or other animals

Hearing range describes the range of frequencies that can be heard by humans or other animals, though it can also refer to the range of levels. The human range is commonly given as 20 to 20,000 Hz, although there is considerable variation between individuals, especially at high frequencies, and a gradual loss of sensitivity to higher frequencies with age is considered normal. Sensitivity also varies with frequency, as shown by equal-loudness contours. Routine investigation for hearing loss usually involves an audiogram which shows threshold levels relative to a normal.

The Greenwood function correlates the position of the hair cells in the inner ear to the frequencies that stimulate their corresponding auditory neurons. Empirically derived in 1961 by Donald D. Greenwood, the relationship has shown to be constant throughout mammalian species when scaled to the appropriate cochlear spiral lengths and audible frequency ranges. Moreover, the Greenwood function provides the mathematical basis for cochlear implant surgical electrode array placement within the cochlea.

Sound from ultrasound is the name given here to the generation of audible sound from modulated ultrasound without using an active receiver. This happens when the modulated ultrasound passes through a nonlinear medium which acts, intentionally or unintentionally, as a demodulator.

Auditory masking occurs when the perception of one sound is affected by the presence of another sound.

The hypersonic effect is a phenomenon reported in a controversial scientific study by Tsutomu Oohashi et al., which claims that, although humans cannot consciously hear ultrasound, the presence or absence of those frequencies has a measurable effect on their physiological and psychological reactions.

Diplacusis, also known as diplacusis binauralis, binauralis disharmonica or inter aural pitch difference (IPD) is a type of hearing disorder that is the perception of a single auditory stimulus as sounds of a different pitch in the two ears. It is typically, though not exclusively, experienced as a secondary symptom of sensorineural hearing loss, although not all patients with sensorineural hearing loss experience diplacusis or tinnitus. The onset is usually spontaneous and can occur following an acoustic trauma, for example an explosive noise, or in the presence of an ear infection. Sufferers may experience the effect permanently, or it may resolve on its own. Diplacusis can be particularly disruptive to individuals working within fields requiring acute audition, such as musicians, sound engineers or performing artists.

Hearing Sensory perception of sound by living organisms

Hearing, or auditory perception, is the ability to perceive sounds by detecting vibrations, changes in the pressure of the surrounding medium through time, through an organ such as the ear. The academic field concerned with hearing is auditory science.

Psychoacoustics is the branch of psychophysics involving the scientific study of sound perception and audiology—how humans perceive various sounds. More specifically, it is the branch of science studying the psychological responses associated with sound. Psychoacoustics is an interdisciplinary field of many areas, including psychology, acoustics, electronic engineering, physics, biology, physiology, and computer science.

Infrasound is sound at frequencies lower than the low frequency end of human hearing threshold at 20 Hz. It is known, however, that humans can perceive sounds below this frequency at very high pressure levels. Infrasound can come from many natural as well as man-made sources, including weather patterns, topographic features, ocean wave activity, thunderstorms, geomagnetic storms, earthquakes, jet streams, mountain ranges, and rocket launchings. Infrasounds are also present in the vocalizations of some animals. Low frequency sounds can travel for long distances with very little attenuation and can be detected hundreds of miles away from their sources.

Temporal envelope (ENV) and temporal fine structure (TFS) are changes in the amplitude and frequency of sound perceived by humans over time. These temporal changes are responsible for several aspects of auditory perception, including loudness, pitch and timbre perception and spatial hearing.

Brian Moore (scientist)

Brian C.J. Moore FmedSci, FRS is an Emeritus Professor of Auditory Perception in the University of Cambridge and an Emeritus Fellow of Wolfson College, Cambridge. His research focuses on psychoacoustics, audiology, and the development and assessment of hearing aids.

Binaural unmasking is phenomenon of auditory perception discovered by Ira Hirsh. In binaural unmasking, the brain combines information from the two ears in order to improve signal detection and identification in noise. The phenomenon is most commonly observed when there is a difference between the interaural phase of the signal and the interaural phase of the noise. When such a difference is present there is an improvement in masking threshold compared to a reference situation in which the interaural phases are the same, or when the stimulus has been presented monaurally. Those two cases usually give very similar thresholds. The size of the improvement is known as the "binaural masking level difference" (BMLD), or simply as the "masking level difference".

References

  1. Ashihara, Kaoru (2007-09-01). "Hearing thresholds for pure tones above 16kHz". The Journal of the Acoustical Society of America. 122 (3): EL52–EL57. Bibcode:2007ASAJ..122L..52A. doi: 10.1121/1.2761883 . ISSN   0001-4966. PMID   17927307. The absolute threshold usually starts to increase sharply when the signal frequency exceeds about 15 kHz. ... The present results show that some humans can perceive tones up to at least 28 kHz when their level exceeds about 100 dB SPL.
  2. Nishimura, T.; Nakagawa, S.; Sakaguchi, T. (January 2003). "Ultrasonic masker clarifies ultrasonic perception in man". Hearing Research. 175 (1–2): 171–177. doi:10.1016/S0378-5955(02)00735-9. PMID   12527135. S2CID   42920475.
  3. Lenhardt, M. (2003). "Ultrasonic hearing in humans: applications for tinnitus treatment" (PDF). Int. Tinnitus J. 9 (2): 69–75. PMID   15106276.
  4. T. Oohashi, E. Nishina, M. Honda, Y. Yonekura, Y. Fuwamoto, N. Kawai, T. Maekawa, S. Nakamura, H. Fukuyama, and H. Shibasaki. Inaudible high-frequency sounds affect brain activity: Hypersonic effect. Journal of Neurophysiology, 83(6):3548–3558, 2000.
  5. Deatherage, B.; Jeffress, L.; Blodgett, H. (1954). "A Note on the Audibility of Intense Ultrasonic Sound". J. Acoust. Soc. Am. 26 (582): 582. Bibcode:1954ASAJ...26..582D. doi:10.1121/1.1907379.