Unsprung mass

Last updated
In this simplified diagram the wheels, tires, and suspension are all part of the vehicle's unsprung weight, with only its one-piece chassis/body constituting its sprung weight Car diagram.jpg
In this simplified diagram the wheels, tires, and suspension are all part of the vehicle's unsprung weight, with only its one-piece chassis/body constituting its sprung weight

The unsprung mass (colloquially unsprung weight) of a vehicle is the mass of the suspension, wheels or tracks (as applicable), and other components directly connected to them. This contrasts with the sprung mass (or weight) supported by the suspension, which includes the body and other components within or attached to it. Components of the unsprung mass include the wheel axles, wheel bearings, wheel hubs, tires, and a portion of the weight of driveshafts, springs, shock absorbers, and suspension links. Brakes that are mounted inboard (i.e. as on the drive shaft, and not part of the wheel or its hub) are part of a vehicle's sprung mass.

Contents

Effects

The unsprung mass of a typical wheel/tire combination represents a trade-off between the pair's bump-absorbing/road-tracking ability and vibration isolation. Bumps and surface imperfections in the road cause tire compression, inducing a force on the unsprung mass. The unsprung mass then reacts to this force with movement of its own. The motion amplitude for small duration and amplitude bumps is inversely proportional to the weight. A lighter wheel which readily rebounds from road bumps will have more grip and more constant grip when tracking over an imperfect road. For this reason, lighter wheels are sought especially for high-performance applications. However, the lighter wheel will soak up less vibration. The irregularities of the road surface will transfer to the cabin through the suspension and hence ride quality and road noise are worse. For longer duration bumps that the wheels follow, greater unsprung mass causes more energy to be absorbed by the wheels and makes the ride worse.

Pneumatic or elastic tires help by restoring some spring to the (otherwise) unsprung mass, but the damping possible from tire flexibility is limited by considerations of fuel economy and overheating. The shock absorbers, if any, also damp the spring motion and must be less stiff than would optimally damp the wheel bounce. So the wheels still vibrate after each bump before coming to rest. On dirt roads and on some softly paved roads, the induced motion generates small bumps, known as corrugations, washboarding or "corduroy" because they resemble smaller versions of the bumps in roads made of logs. These cause sustained wheel bounce in subsequent axles, enlarging the bumps.

High unsprung mass also exacerbates wheel control issues under hard acceleration or braking. If the vehicle does not have adequate wheel location in the vertical plane (such as a rear-wheel drive car with Hotchkiss drive, a live axle supported by simple leaf springs), vertical forces exerted by acceleration or hard braking combined with high unsprung mass can lead to severe wheel hop, compromising traction and steering control.

A beneficial effect of unsprung mass is that high frequency road irregularities, such as the gravel in an asphalt or concrete road surface, are isolated from the body more completely because the tires and springs act as separate filter stages, with the unsprung mass tending to uncouple them. Likewise, sound and vibration isolation is improved (at the expense of handling), in production automobiles, by the use of rubber bushings between the frame and suspension, by any flexibility in the frame or body work, and by the flexibility of the seats.

Unsprung mass and vehicle design

Unsprung mass is a consideration in the design of a vehicle's suspension and the materials chosen for its components. Beam axle suspensions, in which wheels on opposite sides are connected as a rigid unit, generally have greater unsprung mass than independent suspension systems, in which the wheels are suspended and allowed to move separately. Heavy components such as the differential can be made part of the sprung mass by connecting them directly to the body (as in a de Dion tube rear suspension). Lightweight materials, such as aluminum, plastic, carbon fiber, and/or hollow components can provide further weight reductions at the expense of greater cost and/or fragility.

The term 'unsprung mass' was coined by the mathematician Albert Healey of the Dunlop tyre company. He presented one of the first lectures taking a rigid analytical approach to suspension design, 'The Tyre as a part of the Suspension System' to the Institution of Automobile Engineers in November 1924. [1] This lecture was published as a 100-page paper. [2]

Inboard brakes can significantly reduce unsprung mass, but put more load on half axles and (constant velocity) universal joints, and require space that may not be easily accommodated. If located next to a differential or transaxle, waste heat from the brakes may overheat the differential or vice versa, particularly in hard use, such as racing. They also make anti-dive suspension characteristics harder to achieve because the moment created by braking does not act on the suspension arms.

The Chapman strut used the driveshafts as suspension arms, thus requiring only the weight of one component rather than two. Jaguar's patented independent rear suspension (IRS) similarly reduced unsprung mass by replacing the upper wishbone arms of the suspension with the drive shafts, as well as mounting the brakes inboard in some versions.

Scooter-type motorcycles use an integrated engine-gearbox-final drive system that pivots as part of the rear suspension and hence is partly unsprung. This arrangement is linked to the use of quite small wheels, further affecting their poor reputation for road-holding.[ citation needed ]

See also

Notes

  1. Tompkins, Eric (1981). "9: The Beginnings of Tyre Science". The History of the Pneumatic Tyre. Dunlop Archive Project. p.  55. ISBN   0-903214-14-8.
  2. Healey, Albert 3 (1925). "The Tyre as a part of the Suspension System". Proc. Inst. London: Institution of Automobile Engineers.

Related Research Articles

Axle Central shaft for a rotating wheel or gear

An axle or axletree is a central shaft for a rotating wheel or gear. On wheeled vehicles, the axle may be fixed to the wheels, rotating with them, or fixed to the vehicle, with the wheels rotating around the axle. In the former case, bearings or bushings are provided at the mounting points where the axle is supported. In the latter case, a bearing or bushing sits inside a central hole in the wheel to allow the wheel or gear to rotate around the axle. Sometimes, especially on bicycles, the latter type axle is referred to as a spindle.

Car suspension Suspension system for a vehicle

Suspension is the system of tires, tire air, springs, shock absorbers and linkages that connects a vehicle to its wheels and allows relative motion between the two. Suspension systems must support both road holding/handling and ride quality, which are at odds with each other. The tuning of suspensions involves finding the right compromise. It is important for the suspension to keep the road wheel in contact with the road surface as much as possible, because all the road or ground forces acting on the vehicle do so through the contact patches of the tires. The suspension also protects the vehicle itself and any cargo or luggage from damage and wear. The design of front and rear suspension of a car may be different.

Independent suspension Vehicle suspension in which each wheel is suspended independently

Independent suspension is any automobile suspension system that allows each wheel on the same axle to move vertically independently of the others. This is contrasted with a beam axle or deDion axle system in which the wheels are linked – movement on one side does not affect the wheel on the other side. "Independent" refers to the motion or path of movement of the wheels or suspension. It is common for the left and right sides of the suspension to be connected with anti-roll bars or other such mechanisms. The anti-roll bar ties the left and right suspension spring rates together but does not tie their motion together.

Automobile handling and vehicle handling are descriptions of the way a wheeled vehicle responds and reacts to the inputs of a driver, as well as how it moves along a track or road. It is commonly judged by how a vehicle performs particularly during cornering, acceleration, and braking as well as on the vehicle's directional stability when moving in steady state condition.

<span class="mw-page-title-main">Chapman strut</span> Type of automotive suspension design

The Chapman strut is a design of independent rear suspension used for light cars, particularly sports and racing cars. It takes its name from, and is best known for its use by, Colin Chapman of Lotus.

A swing axle is a simple type of independent suspension designed and patented by Edmund Rumpler in 1903. This was a revolutionary invention in automotive suspension, allowing driven (powered) wheels to follow uneven road surfaces independently, thus enabling the vehicle's wheels to maintain better road contact and holding; plus each wheel's reduced unsprung weight means their movements have less impact on the vehicle as a whole. The first automotive application was the Rumpler Tropfenwagen, later followed by the Mercedes 130H/150H/170H, the Standard Superior, the Volkswagen Beetle and its derivatives, the Chevrolet Corvair, and the roll-over prone M151 jeep amongst others.

De Dion tube

A de Dion tube is a sophisticated form of non-independent automobile suspension. It is a considerable improvement over the swing axle, Hotchkiss drive, or live axle. Because it plays no part in transmitting power to the drive wheels, it is sometimes called a "dead axle".

Inboard brake

An inboard brake is an automobile technology wherein the disc brakes are mounted on the chassis of the vehicle, rather than directly on the wheel hubs. Its main advantages are twofold: a reduction in the unsprung weight of the wheel hubs, as this no longer includes the brake discs and calipers; and braking torque is applied directly to the chassis, rather than being transferred to it through the suspension arms.

Portal axle Off-road vehicle suspension and drive technology

Portal axles are an off-road vehicle suspension and drive technology where the axle tube or the half-shaft is off-set from – usually above – the center of the wheel hub and where driving power is transferred to each wheel via a simple gearbox, built onto each hub. This gives two advantages: ground clearance is increased, particularly beneath the low-slung differential housing of the main axles — and secondly, any hub reduction gearing allows the axle halfshafts to drive the same power but at reduced torque. This reduces load on the axle crownwheel and differential.

Hotchkiss drive

The Hotchkiss drive is a shaft drive form of power transmission. It was the dominant means for front-engine, rear-wheel drive layout cars in the 20th century. The name comes from the French automobile manufacturer Hotchkiss, although other makers, such as Peerless, used similar systems before Hotchkiss.

Torque tube

A torque tube system is a power transmission and braking technology that involves a stationary housing around the drive shaft, often used in automobiles with a front engine and rear drive. The torque tube consists of a large diameter stationary housing between the transmission and rear end that fully encloses a rotating tubular steel or small-diameter solid drive shaft that transmits the power of the engine to a regular or limited-slip differential. The purpose of a torque tube is to hold the rear end in place during acceleration and braking. Otherwise, the axle housing would suffer axle wrap, such that the front of the differential would lift up excessively during acceleration and sink down during braking. Its use is not as widespread in modern automobiles as is the Hotchkiss drive, which holds the rear end in place and prevents it from flipping up or down, during acceleration and braking, by anchoring the axle housings to the leaf springs using spring perches.

Torque steer is the unintended influence of engine torque on the steering, especially in front-wheel-drive vehicles. For example, during heavy acceleration, the steering may pull to one side, which may be disturbing to the driver. The effect is manifested either as a tugging sensation in the steering wheel, or a veering of the vehicle from the intended path. Torque steer is directly related to differences in the forces in the contact patches of the left and right drive wheels. The effect becomes more evident when high torques are applied to the drive wheels because of a high overall reduction ratio between the engine and wheels, high engine torque, or some combination of the two. Torque steer is distinct from steering kickback.

Beam axle

A beam axle, rigid axle or solid axle is a dependent suspension design in which a set of wheels is connected laterally by a single beam or shaft. Beam axles were once commonly used at the rear wheels of a vehicle, but historically they have also been used as front axles in four-wheel-drive vehicles. In most automobiles, beam axles have been replaced with front and rear independent suspensions.

A motorcycle's suspension serves a dual purpose: contributing to the vehicle's handling and braking, and providing safety and comfort by keeping the vehicle's passengers comfortably isolated from road noise, bumps and vibrations.

The following outline is provided as an overview of and topical guide to automobiles:

Bicycle suspension Bicycle part

Bicycle suspension is the system, or systems, used to suspend the rider and bicycle in order to insulate them from the roughness of the terrain. Bicycle suspension is used primarily on mountain bikes, but is also common on hybrid bicycles.

The 7 post shaker is a piece of test equipment used to perform technical analysis on race cars. By applying shaking forces the shaker can emulate banking loads, lateral load transfer, longitudinal weight transfer and ride height sensitive downforce to emulate specific racetracks.

Jaguar independent rear suspension Common component of a number of Jaguar production cars since 1961

Jaguar's independent rear suspension (IRS) unit has been a common component of a number of Jaguar production cars since 1961, passing through two major changes of configuration up to 2006 and last used in the Jaguar XK8 and Aston Martin DB7. This article concentrates on the first generation Jaguar IRS, which firmly established the marque's reputation for suspension sophistication, combining as it did smooth ride with excellent roadholding and low levels of noise, vibration, and harshness (NVH). The two generations overlap in time due to their being used in both full size and sports models that were updated at different times.

Wheel hub motor Electric motor in the middle of a wheel

The wheel hub motor is an electric motor that is incorporated into the hub of a wheel and drives it directly.

H-drive Drivetrain for off-road vehicles

An H-drive drivetrain is a system used for heavy off-road vehicles with 6×6 or 8×8 drive to supply power to each wheel station.