Weak measurement

Last updated

In quantum mechanics (and computation & information), weak measurements are a type of quantum measurement that results in an observer obtaining very little information about the system on average, but also disturbs the state very little. [1] From Busch's theorem [2] the system is necessarily disturbed by the measurement. In the literature weak measurements are also known as unsharp, [3] fuzzy, [3] [4] dull, noisy, [5] approximate, and gentle [6] measurements. Additionally weak measurements are often confused with the distinct but related concept of the weak value. [7]

Contents

History

Weak measurements were first thought about in the context of weak continuous measurements of quantum systems [8] (i.e. quantum filtering and quantum trajectories). The physics of continuous quantum measurements is as follows. Consider using an ancilla, e.g. a field or a current, to probe a quantum system. The interaction between the system and the probe correlates the two systems. Typically the interaction only weakly correlates the system and ancilla (specifically, the interaction unitary operator need only to be expanded to first or second order in perturbation theory). By measuring the ancilla and then using quantum measurement theory, the state of the system conditioned on the results of the measurement can be determined. In order to obtain a strong measurement, many ancilla must be coupled and then measured. In the limit where there is a continuum of ancilla the measurement process becomes continuous in time. This process was described first by: Michael B. Mensky; [9] [10] Viacheslav Belavkin; [11] [12] Alberto Barchielli, L. Lanz, G. M. Prosperi; [13] Barchielli; [14] Carlton Caves; [15] [16] Caves and Gerald J. Milburn. [17] Later on Howard Carmichael [18] and Howard M. Wiseman [19] also made important contributions to the field.

The notion of a weak measurement is often misattributed to Yakir Aharonov, David Albert and Lev Vaidman. [7] In their article they consider an example of a weak measurement (and perhaps coin the phrase "weak measurement") and use it to motivate their definition of a weak value, which they defined there for the first time.

Mathematics

There is no universally accepted definition of a weak measurement. One approach is to declare a weak measurement to be a generalized measurement where some or all of the Kraus operators are close to the identity. [20] The approach taken below is to interact two systems weakly and then measure one of them. [21] After detailing this approach we will illustrate it with examples.

Weak interaction and ancilla coupled measurement

Consider a system that starts in the quantum state and an ancilla that starts in the state , the combined initial state is . These two systems interact via the Hamiltonian , which generates the time evolutions (in units where ), where is the "interaction strength", which has units of inverse time. Assume a fixed interaction time and that is small, such that . A series expansion of in gives

Because it was only necessary to expand the unitary to a low order in perturbation theory, we call this is a weak interaction. Further, the fact that the unitary is predominately the identity operator, as and are small, implies that the state after the interaction is not radically different from the initial state. The combined state of the system after interaction is

Now we perform a measurement on the ancilla to find out about the system, this is known as an ancilla-coupled measurement. We will consider measurements in a basis (on the ancilla system) such that . The measurement's action on both systems is described by the action of the projectors on the joint state . From quantum measurement theory we know the conditional state after the measurement is

where is a normalization factor for the wavefunction. Notice the ancilla system state records the outcome of the measurement. The object is an operator on the system Hilbert space and is called a Kraus operator.

With respect to the Kraus operators the post-measurement state of the combined system is

The objects are elements of what is called a POVM and must obey so that the corresponding probabilities sum to unity: . As the ancilla system is no longer correlated with the primary system, it is simply recording the outcome of the measurement, we can trace over it. Doing so gives the conditional state of the primary system alone:

which we still label by the outcome of the measurement . Indeed, these considerations allow one to derive a quantum trajectory.

Example Kraus operators

We will use the canonical example of Gaussian Kraus operators given by Barchielli, Lanz, Prosperi; [13] and Caves and Milburn. [17] Take , where the position and momentum on both systems have the usual Canonical commutation relation . Take the initial wavefunction of the ancilla to have a Gaussian distribution

The position wavefunction of the ancilla is

The Kraus operators are (compared to the discussion above, we set )

while the corresponding POVM elements are

which obey . An alternative representation is often seen in the literature. Using the spectral representation of the position operator , we can write

Notice that . [17] That is, in a particular limit these operators limit to a strong measurement of position; for other values of we refer to the measurement as finite-strength; and as , we say the measurement is weak.

Information-gain–disturbance tradeoff

As stated above, Busch's theorem [2] prevents a free lunch: there can be no information gain without disturbance. However, the tradeoff between information gain and disturbance has been characterized by many authors, including C. A. Fuchs and Asher Peres; [22] Fuchs; [23] Fuchs and K. A. Jacobs; [24] and K. Banaszek. [25]

Recently the information-gain–disturbance tradeoff relation has been examined in the context of what is called the "gentle-measurement lemma". [6] [26]

Applications

Since the early days it has been clear that the primary use of weak measurement would be for feedback control or adaptive measurements of quantum systems. Indeed, this motivated much of Belavkin's work, and an explicit example was given by Caves and Milburn. An early application of an adaptive weak measurements was that of Dolinar receiver, [27] which has been realized experimentally. [28] [29] Another interesting application of weak measurements is to use weak measurements followed by a unitary, possibly conditional on the weak measurement result, to synthesize other generalized measurements. [20] Wiseman and Milburn's book [21] is a good reference for many of the modern developments.

Further reading

Related Research Articles

<span class="mw-page-title-main">Quantum teleportation</span> Physical phenomenon

Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

Bell's theorem is a term encompassing a number of closely related results in physics, all of which determine that quantum mechanics is incompatible with local hidden-variable theories, given some basic assumptions about the nature of measurement. "Local" here refers to the principle of locality, the idea that a particle can only be influenced by its immediate surroundings, and that interactions mediated by physical fields cannot propagate faster than the speed of light. "Hidden variables" are putative properties of quantum particles that are not included in quantum theory but nevertheless affect the outcome of experiments. In the words of physicist John Stewart Bell, for whom this family of results is named, "If [a hidden-variable theory] is local it will not agree with quantum mechanics, and if it agrees with quantum mechanics it will not be local."

In quantum mechanics, a density matrix is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed states. Mixed states arise in quantum mechanics in two different situations:

  1. when the preparation of the system is not fully known, and thus one must deal with a statistical ensemble of possible preparations, and
  2. when one wants to describe a physical system that is entangled with another, without describing their combined state; this case is typical for a system interacting with some environment.

In physics, the CHSH inequality can be used in the proof of Bell's theorem, which states that certain consequences of entanglement in quantum mechanics cannot be reproduced by local hidden-variable theories. Experimental verification of the inequality being violated is seen as confirmation that nature cannot be described by such theories. CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt, who described it in a much-cited paper published in 1969. They derived the CHSH inequality, which, as with John Stewart Bell's original inequality, is a constraint—on the statistical occurrence of "coincidences" in a Bell test—which is necessarily true if an underlying local hidden-variable theory exists. In practice, the inequality is routinely violated by modern experiments in quantum mechanics.

<span class="mw-page-title-main">Quantum decoherence</span> Loss of quantum coherence

Quantum decoherence is the loss of quantum coherence, the process in which a system's behaviour changes from that which can be explained by quantum mechanics to that which can be explained by classical mechanics. In quantum mechanics, particles such as electrons are described by a wave function, a mathematical representation of the quantum state of a system; a probabilistic interpretation of the wave function is used to explain various quantum effects. As long as there exists a definite phase relation between different states, the system is said to be coherent. A definite phase relationship is necessary to perform quantum computing on quantum information encoded in quantum states. Coherence is preserved under the laws of quantum physics.

In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electron will be moving, if an experiment is performed to measure its momentum instead of its position. The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly unpredictable, and vice versa. Furthermore, the fact that nature violates the statistical conditions known as Bell inequalities indicates that the unpredictability of quantum measurement results cannot be explained away as due to ignorance about "local hidden variables" within quantum systems.

In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet.

In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurement described by PVMs.

In quantum mechanics, notably in quantum information theory, fidelity is a measure of the "closeness" of two quantum states. It expresses the probability that one state will pass a test to identify as the other. The fidelity is not a metric on the space of density matrices, but it can be used to define the Bures metric on this space.

<span class="mw-page-title-main">Jaynes–Cummings model</span> Model in quantum optics

The Jaynes–Cummings model is a theoretical model in quantum optics. It describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity.

In quantum mechanics, a weak value is a quantity related to a shift of a measuring device's pointer when usually there is pre- and postselection. It should not be confused with a weak measurement, which is often defined in conjunction. The weak value was first defined by Yakir Aharonov, David Albert, and Lev Vaidman, published in Physical Review Letters 1988, and is related to the two-state vector formalism. There is also a way to obtain weak values without postselection.

The Ghirardi–Rimini–Weber theory (GRW) is a spontaneous collapse theory in quantum mechanics, proposed in 1986 by Giancarlo Ghirardi, Alberto Rimini, and Tullio Weber.

Within computational chemistry, the Slater–Condon rules express integrals of one- and two-body operators over wavefunctions constructed as Slater determinants of orthonormal orbitals in terms of the individual orbitals. In doing so, the original integrals involving N-electron wavefunctions are reduced to sums over integrals involving at most two molecular orbitals, or in other words, the original 3N dimensional integral is expressed in terms of many three- and six-dimensional integrals.

Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.

In quantum field theory, a non-topological soliton (NTS) is a soliton field configuration possessing, contrary to a topological one, a conserved Noether charge and stable against transformation into usual particles of this field for the following reason. For fixed charge Q, the mass sum of Q free particles exceeds the energy (mass) of the NTS so that the latter is energetically favorable to exist.

In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as

The Koopman–von Neumann (KvN) theory is a description of classical mechanics as an operatorial theory similar to quantum mechanics, based on a Hilbert space of complex, square-integrable wavefunctions. As its name suggests, the KvN theory is loosely related to work by Bernard Koopman and John von Neumann in 1931 and 1932, respectively. As explained in this entry, however, the historical origins of the theory and its name are complicated.

The entropy of entanglement is a measure of the degree of quantum entanglement between two subsystems constituting a two-part composite quantum system. Given a pure bipartite quantum state of the composite system, it is possible to obtain a reduced density matrix describing knowledge of the state of a subsystem. The entropy of entanglement is the Von Neumann entropy of the reduced density matrix for any of the subsystems. If it is non-zero, i.e. the subsystem is in a mixed state, it indicates the two subsystems are entangled.

The quantum Fisher information is a central quantity in quantum metrology and is the quantum analogue of the classical Fisher information. The quantum Fisher information of a state with respect to the observable is defined as

References

  1. 1 2 Todd A Brun (2002). "A simple model of quantum trajectories". Am. J. Phys. 70 (7): 719–737. arXiv: quant-ph/0108132 . Bibcode:2002AmJPh..70..719B. doi:10.1119/1.1475328. S2CID   40746086.
  2. 1 2 Paul Busch (2009). J. Christian; W.Myrvold (eds.). "No Information Without Disturbance": Quantum Limitations of Measurement. Invited contribution, "Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle: An International Conference in Honour of Abner Shimony", Perimeter Institute, Waterloo, Ontario, Canada, July 18–21, 2006. Vol. 73. Springer-Verlag, 2008. pp. 229–256. arXiv: 0706.3526 . doi:10.1007/978-1-4020-9107-0. ISBN   978-1-4020-9106-3. ISSN   1566-659X.{{cite book}}: |journal= ignored (help)
  3. 1 2 Gudder, Stan (2005). "Non-disturbance for fuzzy quantum measurements". Fuzzy Sets and Systems. 155 (1): 18–25. doi:10.1016/j.fss.2005.05.009.
  4. Asher Peres (1993). Quantum Theory, Concepts and Methods. Kluwer. p. 387. ISBN   978-0-7923-2549-9.
  5. A. N. Korotkov (2003). "Noisy Quantum Measurement of Solid-State Qubits: Bayesian Approach". In Y. v. Nazarov (ed.). Quantum Noise in Mesoscopic Physics . Springer Netherlands. pp.  205–228. arXiv: cond-mat/0209629 . doi:10.1007/978-94-010-0089-5_10. ISBN   978-1-4020-1240-2. S2CID   9025386.
  6. 1 2 A. Winter (1999). "Coding Theorem and Strong Converse for Quantum Channels". IEEE Trans. Inf. Theory. 45 (7): 2481–2485. arXiv: 1409.2536 . doi:10.1109/18.796385. S2CID   15675016.
  7. 1 2 Yakir Aharonov; David Z. Albert & Lev Vaidman (1988). "How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100". Physical Review Letters. 60 (14): 1351–1354. Bibcode:1988PhRvL..60.1351A. doi:10.1103/PhysRevLett.60.1351. PMID   10038016. S2CID   46042317.
  8. A. Clerk; M. Devoret; S. Girvin; F. Marquardt; R. Schoelkopf (2010). "Introduction to quantum noise, measurement, and amplification". Rev. Mod. Phys. 82 (2): 1155–1208. arXiv: 0810.4729 . Bibcode:2010RvMP...82.1155C. doi:10.1103/RevModPhys.82.1155. S2CID   119200464.
  9. M. B. Mensky (1979). "Quantum restrictions for continuous observation of an oscillator". Phys. Rev. D. 20 (2): 384–387. Bibcode:1979PhRvD..20..384M. doi:10.1103/PhysRevD.20.384.
  10. M. B. Menskii (1979). "Quantum restrictions on the measurement of the parameters of motion of a macroscopic oscillator". Zhurnal Éksperimental'noĭ i Teoreticheskoĭ Fiziki. 77 (4): 1326–1339. Bibcode:1979JETP...50..667M.
  11. V. P. Belavkin (1980). "Quantum filtering of Markov signals with white quantum noise". Radiotechnika I Electronika. 25: 1445–1453.
  12. V. P. Belavkin (1992). "Quantum continual measurements and a posteriori collapse on CCR". Commun. Math. Phys. 146 (3): 611–635. arXiv: math-ph/0512070 . Bibcode:1992CMaPh.146..611B. doi:10.1007/bf02097018. S2CID   17016809.
  13. 1 2 A. Barchielli; L. Lanz; G. M. Prosperi (1982). "A model for the macroscopic description and continual observations in quantum mechanics". Il Nuovo Cimento B. 72 (1): 79–121. Bibcode:1982NCimB..72...79B. doi:10.1007/BF02894935. S2CID   124717734.
  14. A. Barchielli (1986). "Measurement theory and stochastic differential equations in quantum mechanics". Phys. Rev. A. 34 (3): 1642–1649. Bibcode:1986PhRvA..34.1642B. doi:10.1103/PhysRevA.34.1642. PMID   9897442.
  15. Carlton M. Caves (1986). "Quantum mechanics of measurements distributed in time. A path-integral formulation". Phys. Rev. D. 33 (6): 1643–1665. Bibcode:1986PhRvD..33.1643C. doi:10.1103/PhysRevD.33.1643. PMID   9956814.
  16. Carlton M. Caves (1987). "Quantum mechanics of measurements distributed in time. II. Connections among formulations". Phys. Rev. D. 35 (6): 1815–1830. Bibcode:1987PhRvD..35.1815C. doi:10.1103/PhysRevD.35.1815. PMID   9957858.
  17. 1 2 3 Carlton M. Caves; G. J. Milburn (1987). "Quantum-mechanical model for continuous position measurements" (PDF). Phys. Rev. A. 36 (12): 5543–5555. Bibcode:1987PhRvA..36.5543C. doi:10.1103/PhysRevA.36.5543. PMID   9898842.
  18. Carmichael, Howard (1993). An open systems approach to quantum optics, Lecture Notes in Physics. Springer.
  19. Wiseman, Howard Mark (1994). Quantum trajectories and feedback (PhD). University of Queensland.
  20. 1 2 O. Oreshkov; T. A. Brun (2005). "Weak Measurements Are Universal". Phys. Rev. Lett. 95 (11): 110409. arXiv: quant-ph/0503017 . Bibcode:2005PhRvL..95k0409O. doi:10.1103/PhysRevLett.95.110409. PMID   16196989. S2CID   43706272.
  21. 1 2 3 Wiseman, Howard M.; Milburn, Gerard J. (2009). Quantum Measurement and Control . Cambridge; New York: Cambridge University Press. pp.  460. ISBN   978-0-521-80442-4.
  22. C. A. Fuchs; A. Peres (1996). "Quantum-state disturbance versus information gain: Uncertainty relations for quantum information". Phys. Rev. A. 53 (4): 2038–2045. arXiv: quant-ph/9512023 . Bibcode:1996PhRvA..53.2038F. doi:10.1103/PhysRevA.53.2038. PMID   9913105. S2CID   28280831.
  23. C. A. Fuchs (1996). "Information Gain vs. State Disturbance in Quantum Theory". arXiv: quant-ph/9611010 . Bibcode:1996quant.ph.11010F.{{cite journal}}: Cite journal requires |journal= (help)
  24. C. A. Fuchs; K. A. Jacobs (2001). "Information-tradeoff relations for finite-strength quantum measurements". Phys. Rev. A. 63 (6): 062305. arXiv: quant-ph/0009101 . Bibcode:2001PhRvA..63f2305F. doi:10.1103/PhysRevA.63.062305. S2CID   119476175.
  25. K. Banaszek (2006). "Quantum-state disturbance versus information gain: Uncertainty relations for quantum information". Open Syst. Inf. Dyn. 13: 1–16. arXiv: quant-ph/0006062 . doi:10.1007/s11080-006-7263-8. S2CID   35809757.
  26. T. Ogawa; H. Nagaoka (1999). "Strong Converse to the Quantum Channel Coding Theorem". IEEE Trans. Inf. Theory. 45 (7): 2486–2489. arXiv: quant-ph/9808063 . Bibcode:2002quant.ph..8139O. doi:10.1109/18.796386. S2CID   1360955.
  27. S. J. Dolinar (1973). "An optimum receiver for the binary coherent state quantum channel" (PDF). MIT Research Laboratory of Electronics Quarterly Progress Report. 111: 115–120.
  28. R. L. Cook; P. J. Martin; J. M. Geremia (2007). "Optical coherent state discrimination using a closed-loop quantum measurement". Nature. 446 (11): 774–777. Bibcode:2007Natur.446..774C. doi:10.1038/nature05655. PMID   17429395. S2CID   4381249.
  29. F. E. Becerra; J. Fan; G. Baumgartner; J. Goldhar; J. T. Kosloski; A. Migdall (2013). "Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination". Nature Photonics. 7 (11): 147–152. Bibcode:2013NaPho...7..147B. doi:10.1038/nphoton.2012.316. S2CID   41194236.
  30. K. Jacobs; D. A. Steck (2006). "A straightforward introduction to continuous quantum measurement". Contemporary Physics. 47 (5): 279–303. arXiv: quant-ph/0611067 . Bibcode:2006ConPh..47..279J. doi:10.1080/00107510601101934. S2CID   33746261.
  31. Boaz Tamir; Eliahu Cohen (2013). "Introduction to Weak Measurements and Weak Values". Quanta. 2 (1): 7–17. doi: 10.12743/quanta.v2i1.14 .