Canonical commutation relation

Last updated

In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example,

Contents

between the position operator x and momentum operator px in the x direction of a point particle in one dimension, where [x , px] = xpxpxx is the commutator of x and px, i is the imaginary unit, and is the reduced Planck constant h/2π, and is the unit operator. In general, position and momentum are vectors of operators and their commutation relation between different components of position and momentum can be expressed as

where is the Kronecker delta.

This relation is attributed to Werner Heisenberg, Max Born and Pascual Jordan (1925), [1] [2] who called it a "quantum condition" serving as a postulate of the theory; it was noted by E. Kennard (1927) [3] to imply the Heisenberg uncertainty principle. The Stone–von Neumann theorem gives a uniqueness result for operators satisfying (an exponentiated form of) the canonical commutation relation.

Relation to classical mechanics

By contrast, in classical physics, all observables commute and the commutator would be zero. However, an analogous relation exists, which is obtained by replacing the commutator with the Poisson bracket multiplied by i,

This observation led Dirac to propose that the quantum counterparts , ĝ of classical observables f, g satisfy

In 1946, Hip Groenewold demonstrated that a general systematic correspondence between quantum commutators and Poisson brackets could not hold consistently. [4] [5]

However, he further appreciated that such a systematic correspondence does, in fact, exist between the quantum commutator and a deformation of the Poisson bracket, today called the Moyal bracket, and, in general, quantum operators and classical observables and distributions in phase space. He thus finally elucidated the consistent correspondence mechanism, the Wigner–Weyl transform, that underlies an alternate equivalent mathematical representation of quantum mechanics known as deformation quantization. [4] [6]

Derivation from Hamiltonian mechanics

According to the correspondence principle, in certain limits the quantum equations of states must approach Hamilton's equations of motion. The latter state the following relation between the generalized coordinate q (e.g. position) and the generalized momentum p:

In quantum mechanics the Hamiltonian , (generalized) coordinate and (generalized) momentum are all linear operators.

The time derivative of a quantum state is - (by Schrödinger equation). Equivalently, since the operators are not explicitly time-dependent, they can be seen to be evolving in time (see Heisenberg picture) according to their commutation relation with the Hamiltonian:

In order for that to reconcile in the classical limit with Hamilton's equations of motion, must depend entirely on the appearance of in the Hamiltonian and must depend entirely on the appearance of in the Hamiltonian. Further, since the Hamiltonian operator depends on the (generalized) coordinate and momentum operators, it can be viewed as a functional, and we may write (using functional derivatives):

In order to obtain the classical limit we must then have

Weyl relations

The group generated by exponentiation of the 3-dimensional Lie algebra determined by the commutation relation is called the Heisenberg group. This group can be realized as the group of upper triangular matrices with ones on the diagonal. [7]

According to the standard mathematical formulation of quantum mechanics, quantum observables such as and should be represented as self-adjoint operators on some Hilbert space. It is relatively easy to see that two operators satisfying the above canonical commutation relations cannot both be bounded. Certainly, if and were trace class operators, the relation gives a nonzero number on the right and zero on the left.

Alternately, if and were bounded operators, note that , hence the operator norms would satisfy

so that, for any n,

However, n can be arbitrarily large, so at least one operator cannot be bounded, and the dimension of the underlying Hilbert space cannot be finite. If the operators satisfy the Weyl relations (an exponentiated version of the canonical commutation relations, described below) then as a consequence of the Stone–von Neumann theorem, both operators must be unbounded.

Still, these canonical commutation relations can be rendered somewhat "tamer" by writing them in terms of the (bounded) unitary operators and . The resulting braiding relations for these operators are the so-called Weyl relations

These relations may be thought of as an exponentiated version of the canonical commutation relations; they reflect that translations in position and translations in momentum do not commute. One can easily reformulate the Weyl relations in terms of the representations of the Heisenberg group.

The uniqueness of the canonical commutation relations—in the form of the Weyl relations—is then guaranteed by the Stone–von Neumann theorem.

It is important to note that for technical reasons, the Weyl relations are not strictly equivalent to the canonical commutation relation . If and were bounded operators, then a special case of the Baker–Campbell–Hausdorff formula would allow one to "exponentiate" the canonical commutation relations to the Weyl relations. [8] Since, as we have noted, any operators satisfying the canonical commutation relations must be unbounded, the Baker–Campbell–Hausdorff formula does not apply without additional domain assumptions. Indeed, counterexamples exist satisfying the canonical commutation relations but not the Weyl relations. [9] (These same operators give a counterexample to the naive form of the uncertainty principle.) These technical issues are the reason that the Stone–von Neumann theorem is formulated in terms of the Weyl relations.

A discrete version of the Weyl relations, in which the parameters s and t range over , can be realized on a finite-dimensional Hilbert space by means of the clock and shift matrices.

Generalizations

The simple formula

valid for the quantization of the simplest classical system, can be generalized to the case of an arbitrary Lagrangian . [10] We identify canonical coordinates (such as x in the example above, or a field Φ(x) in the case of quantum field theory) and canonical momentaπx (in the example above it is p, or more generally, some functions involving the derivatives of the canonical coordinates with respect to time):

This definition of the canonical momentum ensures that one of the Euler–Lagrange equations has the form

The canonical commutation relations then amount to

where δij is the Kronecker delta.

Further, it can be shown that

Using , it can be shown that by mathematical induction

generally known as McCoy's formula. [11]

Gauge invariance

Canonical quantization is applied, by definition, on canonical coordinates. However, in the presence of an electromagnetic field, the canonical momentum p is not gauge invariant. The correct gauge-invariant momentum (or "kinetic momentum") is

(SI units)      (cgs units),

where q is the particle's electric charge, A is the vector potential, and c is the speed of light. Although the quantity pkin is the "physical momentum", in that it is the quantity to be identified with momentum in laboratory experiments, it does not satisfy the canonical commutation relations; only the canonical momentum does that. This can be seen as follows.

The non-relativistic Hamiltonian for a quantized charged particle of mass m in a classical electromagnetic field is (in cgs units)

where A is the three-vector potential and φ is the scalar potential. This form of the Hamiltonian, as well as the Schrödinger equation = iħ∂ψ/∂t, the Maxwell equations and the Lorentz force law are invariant under the gauge transformation

where

and Λ = Λ(x,t) is the gauge function.

The angular momentum operator is

and obeys the canonical quantization relations

defining the Lie algebra for so(3), where is the Levi-Civita symbol. Under gauge transformations, the angular momentum transforms as

The gauge-invariant angular momentum (or "kinetic angular momentum") is given by

which has the commutation relations

where

is the magnetic field. The inequivalence of these two formulations shows up in the Zeeman effect and the Aharonov–Bohm effect.

Uncertainty relation and commutators

All such nontrivial commutation relations for pairs of operators lead to corresponding uncertainty relations, [12] involving positive semi-definite expectation contributions by their respective commutators and anticommutators. In general, for two Hermitian operators A and B, consider expectation values in a system in the state ψ, the variances around the corresponding expectation values being A)2(AA)2, etc.

Then

where [A, B] A BB A is the commutator of A and B, and {A, B} A B + B A is the anticommutator.

This follows through use of the Cauchy–Schwarz inequality, since |A2| |B2| |A B|2, and A B = ([A, B] + {A, B})/2 ; and similarly for the shifted operators AA and BB. (Cf. uncertainty principle derivations.)

Substituting for A and B (and taking care with the analysis) yield Heisenberg's familiar uncertainty relation for x and p, as usual.

Uncertainty relation for angular momentum operators

For the angular momentum operators Lx = y pzz py, etc., one has that

where is the Levi-Civita symbol and simply reverses the sign of the answer under pairwise interchange of the indices. An analogous relation holds for the spin operators.

Here, for Lx and Ly, [12] in angular momentum multiplets ψ = |,m, one has, for the transverse components of the Casimir invariant Lx2 + Ly2+ Lz2, the z-symmetric relations

Lx2 = Ly2 = ( ( + 1) − m2) ℏ2/2 ,

as well as Lx = Ly = 0 .

Consequently, the above inequality applied to this commutation relation specifies

hence

and therefore

so, then, it yields useful constraints such as a lower bound on the Casimir invariant:  ( + 1) |m| (|m| + 1), and hence |m|, among others.

See also

Related Research Articles

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

<span class="mw-page-title-main">Quantum harmonic oscillator</span> Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

In physics, an operator is a function over a space of physical states onto another space of physical states. The simplest example of the utility of operators is the study of symmetry. Because of this, they are useful tools in classical mechanics. Operators are even more important in quantum mechanics, where they form an intrinsic part of the formulation of the theory.

In physics, the Schrödinger picture or Schrödinger representation is a formulation of quantum mechanics in which the state vectors evolve in time, but the operators are mostly constant with respect to time. This differs from the Heisenberg picture which keeps the states constant while the observables evolve in time, and from the interaction picture in which both the states and the observables evolve in time. The Schrödinger and Heisenberg pictures are related as active and passive transformations and commutation relations between operators are preserved in the passage between the two pictures.

<span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. An annihilation operator lowers the number of particles in a given state by one. A creation operator increases the number of particles in a given state by one, and it is the adjoint of the annihilation operator. In many subfields of physics and chemistry, the use of these operators instead of wavefunctions is known as second quantization. They were introduced by Paul Dirac.

<span class="mw-page-title-main">Canonical quantization</span> Process of converting a classical physical theory into one compatible with quantum mechanics

In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory to the greatest extent possible.

In quantum mechanics, the momentum operator is the operator associated with the linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case of one particle in one spatial dimension, the definition is:

The Ehrenfest theorem, named after Austrian theoretical physicist Paul Ehrenfest, relates the time derivative of the expectation values of the position and momentum operators x and p to the expectation value of the force on a massive particle moving in a scalar potential ,

In quantum mechanics, the angular momentum operator is one of several related operators analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum problems involving rotational symmetry. Such an operator is applied to a mathematical representation of the physical state of a system and yields an angular momentum value if the state has a definite value for it. In both classical and quantum mechanical systems, angular momentum is one of the three fundamental properties of motion.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

In quantum mechanics and quantum field theory, a Schrödinger field, named after Erwin Schrödinger, is a quantum field which obeys the Schrödinger equation. While any situation described by a Schrödinger field can also be described by a many-body Schrödinger equation for identical particles, the field theory is more suitable for situations where the particle number changes.

<span class="mw-page-title-main">Kicked rotator</span>

The kicked rotator, also spelled as kicked rotor, is a paradigmatic model for both Hamiltonian chaos and quantum chaos. It describes a free rotating stick in an inhomogeneous "gravitation like" field that is periodically switched on in short pulses. The model is described by the Hamiltonian

This is a glossary for the terminology often encountered in undergraduate quantum mechanics courses.

The Koopman–von Neumann (KvN) theory is a description of classical mechanics as an operatorial theory similar to quantum mechanics, based on a Hilbert space of complex, square-integrable wavefunctions. As its name suggests, the KvN theory is loosely related to work by Bernard Koopman and John von Neumann in 1931 and 1932, respectively. As explained in this entry, however, the historical origins of the theory and its name are complicated.

In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.

In quantum mechanics, dynamical pictures are the multiple equivalent ways to mathematically formulate the dynamics of a quantum system.

In quantum mechanics, a translation operator is defined as an operator which shifts particles and fields by a certain amount in a certain direction. It is a special case of the shift operator from functional analysis.

References

  1. "The Development of Quantum Mechanics".
  2. Born, M.; Jordan, P. (1925). "Zur Quantenmechanik". Zeitschrift für Physik. 34 (1): 858–888. Bibcode:1925ZPhy...34..858B. doi:10.1007/BF01328531. S2CID   186114542.
  3. Kennard, E. H. (1927). "Zur Quantenmechanik einfacher Bewegungstypen". Zeitschrift für Physik. 44 (4–5): 326–352. Bibcode:1927ZPhy...44..326K. doi:10.1007/BF01391200. S2CID   121626384.
  4. 1 2 Groenewold, H. J. (1946). "On the principles of elementary quantum mechanics". Physica. 12 (7): 405–460. Bibcode:1946Phy....12..405G. doi:10.1016/S0031-8914(46)80059-4.
  5. Hall 2013 Theorem 13.13
  6. Curtright, T. L.; Zachos, C. K. (2012). "Quantum Mechanics in Phase Space". Asia Pacific Physics Newsletter. 01: 37–46. arXiv: 1104.5269 . doi:10.1142/S2251158X12000069. S2CID   119230734.
  7. Hall 2015 Section 1.2.6 and Proposition 3.26
  8. See Section 5.2 of Hall 2015 for an elementary derivation
  9. Hall 2013 Example 14.5
  10. Townsend, J. S. (2000). A Modern Approach to Quantum Mechanics . Sausalito, CA: University Science Books. ISBN   1-891389-13-0.
  11. McCoy, N. H. (1929), "On commutation formulas in the algebra of quantum mechanics", Transactions of the American Mathematical Society31 (4), 793-806 online
  12. 1 2 Robertson, H. P. (1929). "The Uncertainty Principle". Physical Review . 34 (1): 163–164. Bibcode:1929PhRv...34..163R. doi:10.1103/PhysRev.34.163.