Wet scrubber

Last updated

The term wet scrubber describes a variety of devices that remove pollutants from a furnace flue gas or from other gas streams. In a wet scrubber, the polluted gas stream is brought into contact with the scrubbing liquid, by spraying it with the liquid, by forcing it through a pool of liquid, or by some other contact method, so as to remove the pollutants.

Contents

Design

A venturi scrubber design. The mist eliminator for a venturi scrubber is often a separate device called a cyclonic separator Venturimistelim.gif
A venturi scrubber design. The mist eliminator for a venturi scrubber is often a separate device called a cyclonic separator
A packed bed tower design where the mist eliminator is built into the top of the structure. Various tower designs exist Packedtowerex.gif
A packed bed tower design where the mist eliminator is built into the top of the structure. Various tower designs exist

The design of wet scrubbers or any air pollution control device depends on the industrial process conditions and the nature of the air pollutants involved. Inlet gas characteristics and dust properties (if particles are present) are of primary importance. Scrubbers can be designed to collect particulate matter and/or gaseous pollutants. The versatility of wet scrubbers allow them to be built in numerous configurations, all designed to provide good contact between the liquid and polluted gas stream.

Wet scrubbers remove dust particles by capturing them in liquid droplets. The droplets are then collected, the liquid dissolving or absorbing the pollutant gases. Any droplets that are in the scrubber inlet gas must be separated from the outlet gas stream by means of another device referred to as a mist eliminator or entrainment separator (these terms are interchangeable). Also, the resultant scrubbing liquid must be treated prior to any ultimate discharge or being reused in the plant.

A wet scrubber's ability to collect small particles is often directly proportional to the power input into the scrubber. Low energy devices such as spray towers are used to collect particles larger than 5 micrometers. To obtain high efficiency removal of 1 micrometer (or less) particles generally requires high-energy devices such as venturi scrubbers or augmented devices such as condensation scrubbers. Additionally, a properly designed and operated entrainment separator or mist eliminator is important to achieve high removal efficiencies. The greater the number of liquid droplets that are not captured by the mist eliminator, the higher the potential emission levels.

Wet scrubbers that remove gaseous pollutants are referred to as absorbers. Good gas-to-liquid contact is essential to obtain high removal efficiencies in absorbers. Various wet-scrubber designs are used to remove gaseous pollutants, with the packed tower and the plate tower being the most common.

If the gas stream contains both particulate matter and gases, wet scrubbers are generally the only single air pollution control device that can remove both pollutants. Wet scrubbers can achieve high removal efficiencies for either particles or gases and, in some instances, can achieve a high removal efficiency for both pollutants in the same system. However, in many cases, the best operating conditions for particles collection are the poorest for gas removal.

In general, obtaining high simultaneous gas and particulate removal efficiencies requires that one of them be easily collected (i.e., that the gases are very soluble in the liquid or that the particles are large and readily captured), or by the use of a scrubbing reagent such as lime or sodium hydroxide.

Advantages and disadvantages

For particulate control, wet scrubbers (also referred to as wet collectors) are evaluated against fabric filters and electrostatic precipitators (ESPs). Some advantages of wet scrubbers over these devices are as follows:

Some disadvantages of wet scrubbers include corrosion, the need for entrainment separation or mist removal to obtain high efficiencies and the need for treatment or reuse of spent liquid.

Wet scrubbers have been used in a variety of industries such as acid plants, fertilizer plants, steel mills, asphalt plants, and large power plants.

Relative advantages and disadvantages of wet scrubbers compared to other control devices
AdvantagesDisadvantages
  • Small space requirements: Scrubbers reduce the temperature and volume of the unsaturated exhaust stream. Therefore, vessel sizes, including fans and ducts downstream, are smaller than those of other control devices. Smaller sizes result in lower capital costs and more flexibility in site location of the scrubber.
  • No secondary dust sources: Once particulate matter is collected, it cannot escape from hoppers or during transport.
  • Handles high-temperature, high-humidity gas streams: No temperature limits or condensation problems can occur as in baghouses or ESPs.
  • Minimal fire and explosion hazards: Various dry dusts are flammable. Using water eliminates the possibility of explosions.
  • Ability to collect both gases and particulate matter.
  • Corrosion problems: Water and dissolved pollutants can form highly corrosive acid solutions. Proper construction materials are very important. Also, wet-dry interface areas can result in corrosion.
  • High power requirements: High collection efficiencies for particulate matter are attainable only at high pressure drops, resulting in high operating costs.
  • Water pollution problems: ash ponds, settling ponds or sludge clarifiers may be needed to meet wastewater regulations.
  • Difficult product recovery: Dewatering and drying of scrubber sludge make recovery of any dust for reuse very expensive and difficult.

Components

Some components that are specific to the wet scrubbing process include:

A system may include one or multiple of these components in addition to various supporting components such as:

A typical wet scrubbing process can be described as follows:

Categorization

Since wet scrubbers vary greatly in complexity and method of operation, devising categories into which all of them neatly fit is extremely difficult. Scrubbers for particle collection are usually categorized by the gas-side pressure drop of the system. Gas-side pressure drop refers to the pressure difference, or pressure drop, that occurs as the exhaust gas is pushed or pulled through the scrubber, disregarding the pressure that would be used for pumping or spraying the liquid into the scrubber.

Scrubbers may be classified by pressure drop as follows:

However, most scrubbers operate over a wide range of pressure drops, depending on their specific application, thereby making this type of categorization difficult.

Another way to classify wet scrubbers is by their use - to primarily collect either particulates or gaseous pollutants. Again, this distinction is not always clear since scrubbers can often be used to remove both types of pollutants.

Wet scrubbers can also be categorized by the manner in which the gas and liquid phases are brought into contact. Scrubbers are designed to use power, or energy, from the gas stream or the liquid stream, or some other method to bring the pollutant gas stream into contact with the liquid. These categories are given in Table 2. [1]

Categories of wet collectors by energy source used for contact
Wet collectorEnergy source used for gas-liquid contact
  • Gas-phase contacting
  • Liquid-phase contacting
  • Wet film
  • Combination
    • Liquid phase and gas phase
    • Mechanically aided
  • Gas stream
  • Liquid stream
  • Liquid and gas streams
  • Energy source:
    • Liquid and gas streams
    • Mechanically driven rotor

Material of construction and design

Corrosion can be a prime problem associated with chemical industry scrubbing systems. Fibre-reinforced plastic and dual keys are often used as most dependable materials of construction.

Bibliography

Related Research Articles

<span class="mw-page-title-main">Cyclonic separation</span> Method of removing particulates from a fluid stream through vortex separation

Cyclonic separation is a method of removing particulates from an air, gas or liquid stream, without the use of filters, through vortex separation. When removing particulate matter from liquid, a hydrocyclone is used; while from gas, a gas cyclone is used. Rotational effects and gravity are used to separate mixtures of solids and fluids. The method can also be used to separate fine droplets of liquid from a gaseous stream.

<span class="mw-page-title-main">Flue-gas desulfurization</span> Technologies used in fossil-fuel power plants

Flue-gas desulfurization (FGD) is a set of technologies used to remove sulfur dioxide from exhaust flue gases of fossil-fuel power plants, and from the emissions of other sulfur oxide emitting processes such as waste incineration, petroleum refineries, cement and lime kilns.

<span class="mw-page-title-main">Electrostatic precipitator</span> Filtration device

An electrostatic precipitator (ESP) is a filterless device that removes fine particles, such as dust and smoke, from a flowing gas using the force of an induced electrostatic charge minimally impeding the flow of gases through the unit.

<span class="mw-page-title-main">Flue gas</span> Gas exiting to the atmosphere via a flue

Flue gas is the gas exiting to the atmosphere via a flue, which is a pipe or channel for conveying exhaust gases, as from a fireplace, oven, furnace, boiler or steam generator. It often refers to the exhaust gas of combustion at power plants. Technology is available to remove pollutants from flue gas at power plants.

Scrubber systems are a diverse group of air pollution control devices that can be used to remove some particulates and/or gases from industrial exhaust streams. An early application of a carbon dioxide scrubber was in the submarine the Ictíneo I, in 1859; a role for which they continue to be used today. Traditionally, the term "scrubber" has referred to pollution control devices that use liquid to wash unwanted pollutants from a gas stream. Recently, the term has also been used to describe systems that inject a dry reagent or slurry into a dirty exhaust stream to "wash out" acid gases. Scrubbers are one of the primary devices that control gaseous emissions, especially acid gases. Scrubbers can also be used for heat recovery from hot gases by flue-gas condensation. They are also used for the high flows in solar, PV, or LED processes.

<span class="mw-page-title-main">Demister (vapor)</span>

A demister is a device often fitted to vapor–liquid separator vessels to enhance the removal of liquid droplets entrained in a vapor stream. Demisters may be a mesh-type coalescer, vane pack or other structure intended to aggregate the mist into droplets that are heavy enough to separate from the vapor stream.

<span class="mw-page-title-main">Dust collector</span>

A dust collector is a system used to enhance the quality of air released from industrial and commercial processes by collecting dust and other impurities from air or gas. Designed to handle high-volume dust loads, a dust collector system consists of a blower, dust filter, a filter-cleaning system, and a dust receptacle or dust removal system. It is distinguished from air purifiers, which use disposable filters to remove dust.

Hydrochloric acid regeneration or HCl regeneration is a chemical process for the reclamation of bound and unbound HCl from metal chloride solutions such as hydrochloric acid.

<span class="mw-page-title-main">Spray tower</span>

A spray tower is a gas-liquid contactor used to achieve mass and heat transfer between a continuous gas phase and a dispersed liquid phase. It consists of an empty cylindrical vessel made of steel or plastic, and nozzles that spray liquid into the vessel. The inlet gas stream usually enters at the bottom of the tower and moves upward, while the liquid is sprayed downward from one or more levels. This flow of inlet gas and liquid in opposite directions is called countercurrent flow.

<span class="mw-page-title-main">Baffle spray scrubber</span> Air pollution control device

Baffle spray scrubbers are a technology for air pollution control. They are very similar to spray towers in design and operation. However, in addition to using the energy provided by the spray nozzles, baffles are added to allow the gas stream to atomize some liquid as it passes over them.

<span class="mw-page-title-main">Venturi scrubber</span> Air pollution control technology

A venturi scrubber is designed to effectively use the energy from a high-velocity inlet gas stream to atomize the liquid being used to scrub the gas stream. This type of technology is a part of the group of air pollution controls collectively referred to as wet scrubbers.

An important parameter in wet scrubbing systems is the rate of liquid flow. It is common in wet scrubber terminology to express the liquid flow as a function of the gas flow rate that is being treated. This is commonly called the liquid-to-gas ratio and uses the units of gallons per 1,000 actual cubic feet or litres per cubic metre (L/m3).

<span class="mw-page-title-main">Mechanically aided scrubber</span> A form of pollution control technology

Mechanically aided scrubbers are a form of pollution control technology. This type of technology is a part of the group of air pollution controls collectively referred to as wet scrubbers.

<span class="mw-page-title-main">Cyclonic spray scrubber</span>

Cyclonic spray scrubbers are an air pollution control technology. They use the features of both the dry cyclone and the spray chamber to remove pollutants from gas streams.

Particle collection in wet scrubbers capture relatively small dust particles with the wet scrubber's large liquid droplets. In most wet scrubbing systems, droplets produced are generally larger than 50 micrometres. As a point of reference, human hair ranges in diameter from 50 to 100 micrometres. The size distribution of particles to be collected is source specific.
For example, particles produced by mechanical means tend to be large ; whereas, particles produced from combustion or a chemical reaction will have a substantial portion of small and submicrometre particles.

The term separator in oilfield terminology designates a pressure vessel used for separating well fluids produced from oil and gas wells into gaseous and liquid components. A separator for petroleum production is a large vessel designed to separate production fluids into their constituent components of oil, gas and water. A separating vessel may be referred to in the following ways: Oil and gas separator, Separator, Stage separator, Trap, Knockout vessel, Flash chamber, Expansion separator or expansion vessel, Scrubber, Filter. These separating vessels are normally used on a producing lease or platform near the wellhead, manifold, or tank battery to separate fluids produced from oil and gas wells into oil and gas or liquid and gas. An oil and gas separator generally includes the following essential components and features:

  1. A vessel that includes (a) primary separation device and/or section, (b) secondary "gravity" settling (separating) section, (c) mist extractor to remove small liquid particles from the gas, (d) gas outlet, (e) liquid settling (separating) section to remove gas or vapor from oil, (f) oil outlet, and (g) water outlet.
  2. Adequate volumetric liquid capacity to handle liquid surges (slugs) from the wells and/or flowlines.
  3. Adequate vessel diameter and height or length to allow most of the liquid to separate from the gas so that the mist extractor will not be flooded.
  4. A means of controlling an oil level in the separator, which usually includes a liquid-level controller and a diaphragm motor valve on the oil outlet.
  5. A back pressure valve on the gas outlet to maintain a steady pressure in the vessel.
  6. Pressure relief devices.
<span class="mw-page-title-main">Vapor–liquid separator</span> Device for separating a liquid-vapor mixture into its component phases

In chemical engineering, a vapor–liquid separator is a device used to separate a vapor–liquid mixture into its constituent phases. It can be a vertical or horizontal vessel, and can act as a 2-phase or 3-phase separator.

Supersonic gas separation is a technology to remove one or several gaseous components out of a mixed gas. The process condensates the target components by cooling the gas through expansion in a Laval nozzle and then separates the condensates from the dried gas through an integrated cyclonic gas/liquid separator. The separator is only using a part of the field pressure as energy and has technical and commercial advantages when compared to commonly used conventional technologies.

Quenching, in the context of pollution scrubbers, refers to the cooling of hot exhaust gas by water sprays before it enters the scrubber proper. Hot gases are often cooled to near the saturation level. If not cooled, the hot gas stream can evaporate a large portion of the scrubbing liquor, adversely affecting collection efficiency and damaging scrubber internal parts. If the gases entering the scrubber are too hot, some liquid droplets may evaporate before they have a chance to contact pollutants in the exhaust stream, and others may evaporate after contact, causing captured particles to become reentrained. In some cases, quenching can actually save money. Cooling the gases reduces the temperature and, therefore, the volume of gases, permitting the use of less expensive construction materials and a smaller scrubber vessel and fan.

The circulating fluidized bed (CFB) is a type of Fluidized bed combustion that utilizes a recirculating loop for even greater efficiency of combustion. while achieving lower emission of pollutants. Reports suggest that up to 95% of pollutants can be absorbed before being emitted into the atmosphere. The technology is limited in scale however, due to its extensive use of limestone, and the fact that it produces waste byproducts.

References

  1. US EPA Air Pollution Training Institute developed in collaboration with North Carolina State University, College of Engineering (NCSU)