Adenylosuccinate synthase

Last updated
Adenylosuccinate synthase
2v40.jpg
Adenylosuccinate synthetase dimer, Human
Identifiers
EC no. 6.3.4.4
CAS no. 9023-57-8
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
Adenylsucc_synt
PDB 1dj3 EBI.jpg
structures of adenylosuccinate synthetase from Triticum aestivum and Arabidopsis thaliana
Identifiers
SymbolAdenylsucc_synt
Pfam PF00709
Pfam clan CL0023
InterPro IPR001114
PROSITE PDOC00444
SCOP2 1ade / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

In molecular biology, adenylosuccinate synthase (or adenylosuccinate synthetase) (EC 6.3.4.4) is an enzyme that plays an important role in purine biosynthesis, by catalysing the guanosine triphosphate (GTP)-dependent conversion of inosine monophosphate (IMP) and aspartic acid to guanosine diphosphate (GDP), phosphate and N(6)-(1,2-dicarboxyethyl)-AMP. Adenylosuccinate synthetase has been characterised from various sources ranging from Escherichia coli (gene purA) to vertebrate tissues. In vertebrates, two isozymes are present: one involved in purine biosynthesis and the other in the purine nucleotide cycle.

Contents

Structure

The crystal structure of adenylosuccinate synthetase from E. coli reveals that the dominant structural element of each monomer of the homodimer is a central beta-sheet of 10 strands. The first nine strands of the sheet are mutually parallel with right-handed crossover connections between the strands. The 10th strand is antiparallel with respect to the first nine strands. In addition, the enzyme has two antiparallel beta-sheets, composed of two strands and three strands each, 11 alpha-helices and two short 310-helices. Further, it has been suggested that the similarities in the GTP-binding domains of the synthetase and the p21ras protein are an example of convergent evolution of two distinct families of GTP-binding proteins. [1] Structures of adenylosuccinate synthetase from Triticum aestivum and Arabidopsis thaliana when compared with the known structures from E. coli reveals that the overall fold is very similar to that of the E. coli protein. [2]

Isozymes

Humans express two adenylosuccinate synthase isozymes:

adenylosuccinate synthase
Identifiers
SymbolADSS
NCBI gene 159
HGNC 292
OMIM 103060
RefSeq NM_001126
UniProt P30520
Other data
EC number 6.3.4.4
Locus Chr. 1 q44
Search for
Structures Swiss-model
Domains InterPro
adenylosuccinate synthase like 1
Identifiers
Symbol ADSSL1
NCBI gene 122622
HGNC 20093
OMIM 612498
RefSeq NM_152328
UniProt Q8N142
Other data
EC number 6.3.4.4
Locus Chr. 14 q32.33
Search for
Structures Swiss-model
Domains InterPro

Related Research Articles

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

<span class="mw-page-title-main">CTP synthetase</span> Enzyme

CTP synthase is an enzyme involved in pyrimidine biosynthesis that interconverts UTP and CTP.

<span class="mw-page-title-main">Acetolactate synthase</span> Class of enzymes

The acetolactate synthase (ALS) enzyme is a protein found in plants and micro-organisms. ALS catalyzes the first step in the synthesis of the branched-chain amino acids.

Purine metabolism refers to the metabolic pathways to synthesize and break down purines that are present in many organisms.

<span class="mw-page-title-main">GMP synthase</span>

Guanosine monophosphate synthetase, also known as GMPS is an enzyme that converts xanthosine monophosphate to guanosine monophosphate.

<span class="mw-page-title-main">GMP reductase</span>

GMP reductase EC 1.7.1.7 is an enzyme that catalyzes the irreversible and NADPH-dependent reductive deamination of GMP into IMP.

<span class="mw-page-title-main">Ribose-phosphate diphosphokinase</span> Class of enzymes

Ribose-phosphate diphosphokinase is an enzyme that converts ribose 5-phosphate into phosphoribosyl pyrophosphate (PRPP). It is classified under EC 2.7.6.1.

<span class="mw-page-title-main">Shikimate dehydrogenase</span> Enzyme involved in amino acid biosynthesis

In enzymology, a shikimate dehydrogenase (EC 1.1.1.25) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">12-oxophytodienoate reductase</span> Class of enzymes

12-oxophytodienoate reductase (OPRs) is an enzyme of the family of Old Yellow Enzymes (OYE). OPRs are grouped into two groups: OPRI and OPRII – the second group is the focus of this article, as the function of the first group is unknown, but is the subject of current research. The OPR enzyme utilizes the cofactor flavin mononucleotide (FMN) and catalyzes the following reaction in the jasmonic acid synthesis pathway:

<span class="mw-page-title-main">Cystathionine beta-lyase</span> Enzyme

Cystathionine beta-lyase, also commonly referred to as CBL or β-cystathionase, is an enzyme that primarily catalyzes the following α,β-elimination reaction

<span class="mw-page-title-main">Indole-3-glycerol-phosphate synthase</span> Class of enzymes

The enzyme indole-3-glycerol-phosphate synthase (IGPS) (EC 4.1.1.48) catalyzes the chemical reaction

<span class="mw-page-title-main">Aminodeoxychorismate synthase</span>

In enzymology, an aminodeoxychorismate synthase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phenylalanine—tRNA ligase</span>

In enzymology, a phenylalanine—tRNA ligase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phosphoribosylamine—glycine ligase</span>

Phosphoribosylamine—glycine ligase, also known as glycinamide ribonucleotide synthetase (GARS), (EC 6.3.4.13) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phosphoribosylaminoimidazolesuccinocarboxamide synthase</span> Class of enzymes

In molecular biology, the protein domain SAICAR synthase is an enzyme which catalyses a reaction to create SAICAR. In enzymology, this enzyme is also known as phosphoribosylaminoimidazolesuccinocarboxamide synthase. It is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phosphoribosylglycinamide formyltransferase</span>

Phosphoribosylglycinamide formyltransferase (EC 2.1.2.2, 2-amino-N-ribosylacetamide 5'-phosphate transformylase, GAR formyltransferase, GAR transformylase, glycinamide ribonucleotide transformylase, GAR TFase, 5,10-methenyltetrahydrofolate:2-amino-N-ribosylacetamide ribonucleotide transformylase) is an enzyme with systematic name 10-formyltetrahydrofolate:5'-phosphoribosylglycinamide N-formyltransferase. This enzyme catalyses the following chemical reaction

<i>S</i>-Adenosylmethionine synthetase enzyme

S-Adenosylmethionine synthetase, also known as methionine adenosyltransferase (MAT), is an enzyme that creates S-adenosylmethionine by reacting methionine and ATP.

<span class="mw-page-title-main">Amino acid kinase</span>

In molecular biology, the amino acid kinase domain is a protein domain. It is found in protein kinases with various specificities, including the aspartate, glutamate and uridylate kinase families. In prokaryotes and plants the synthesis of the essential amino acids lysine and threonine is predominantly regulated by feed-back inhibition of aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS). In Escherichia coli, thrA, metLM, and lysC encode aspartokinase isozymes that show feedback inhibition by threonine, methionine, and lysine, respectively. The lysine-sensitive isoenzyme of aspartate kinase from spinach leaves has a subunit composition of 4 large and 4 small subunits.

<span class="mw-page-title-main">Prokaryotic riboflavin biosynthesis protein</span> Class of enzymes

The prokaryotic riboflavin biosynthesis protein is a bifunctional enzyme found in bacteria that catalyzes the phosphorylation of riboflavin into flavin mononucleotide (FMN) and the adenylylation of FMN into flavin adenine dinucleotide (FAD). It consists of a C-terminal riboflavin kinase and an N-terminal FMN-adenylyltransferase. This bacterial protein is functionally similar to the monofunctional riboflavin kinases and FMN-adenylyltransferases of eukaryotic organisms, but only the riboflavin kinases are structurally homologous.

The gua operon is responsible for regulating the synthesis of guanosine mono phosphate (GMP), a purine nucleotide, from inosine monophosphate. It consists of two structural genes guaB (encodes for IMP dehydrogenase or and guaA apart from the promoter and operator region.

References

  1. Poland BW, Silva MM, Serra MA, Cho Y, Kim KH, Harris EM, Honzatko RB (December 1993). "Crystal structure of adenylosuccinate synthetase from Escherichia coli. Evidence for convergent evolution of GTP-binding domains". J. Biol. Chem. 268 (34): 25334–42. doi: 10.1016/S0021-9258(19)74396-8 . PMID   8244965.
  2. Prade L, Cowan-Jacob SW, Chemla P, Potter S, Ward E, Fonne-Pfister R (February 2000). "Structures of adenylosuccinate synthetase from Triticum aestivum and Arabidopsis thaliana". J. Mol. Biol. 296 (2): 569–77. doi:10.1006/jmbi.1999.3473. PMID   10669609.
This article incorporates text from the public domain Pfam and InterPro: IPR001114