Advection

Last updated

In the field of physics, engineering, and earth sciences, advection is the transport of a substance or quantity by bulk motion of a fluid. The properties of that substance are carried with it. Generally the majority of the advected substance is also a fluid. The properties that are carried with the advected substance are conserved properties such as energy. An example of advection is the transport of pollutants or silt in a river by bulk water flow downstream. Another commonly advected quantity is energy or enthalpy. Here the fluid may be any material that contains thermal energy, such as water or air. In general, any substance or conserved, extensive quantity can be advected by a fluid that can hold or contain the quantity or substance.

Contents

During advection, a fluid transports some conserved quantity or material via bulk motion. The fluid's motion is described mathematically as a vector field, and the transported material is described by a scalar field showing its distribution over space. Advection requires currents in the fluid, and so cannot happen in rigid solids. It does not include transport of substances by molecular diffusion.

Advection is sometimes confused with the more encompassing process of convection, which is the combination of advective transport and diffusive transport.

In meteorology and physical oceanography, advection often refers to the transport of some property of the atmosphere or ocean, such as heat, humidity (see moisture) or salinity. Advection is important for the formation of orographic clouds and the precipitation of water from clouds, as part of the hydrological cycle.

Distinction between advection and convection

The term advection often serves as a synonym for convection , and this correspondence of terms is used in the literature. More technically, convection applies to the movement of a fluid (often due to density gradients created by thermal gradients), whereas advection is the movement of some material by the velocity of the fluid. Thus, although it might seem confusing, it is technically correct to think of momentum being advected by the velocity field in the Navier-Stokes equations, although the resulting motion would be considered to be convection. Because of the specific use of the term convection to indicate transport in association with thermal gradients, it is probably safer to use the term advection if one is uncertain about which terminology best describes their particular system.

Meteorology

In meteorology and physical oceanography, advection often refers to the horizontal transport of some property of the atmosphere or ocean, such as heat, humidity or salinity, and convection generally refers to vertical transport (vertical advection). Advection is important for the formation of orographic clouds (terrain-forced convection) and the precipitation of water from clouds, as part of the hydrological cycle.

Other quantities

The advection equation also applies if the quantity being advected is represented by a probability density function at each point, although accounting for diffusion is more difficult. [1]

Mathematics of advection

The advection equation is the partial differential equation that governs the motion of a conserved scalar field as it is advected by a known velocity vector field. It is derived using the scalar field's conservation law, together with Gauss's theorem, and taking the infinitesimal limit.

One easily visualized example of advection is the transport of ink dumped into a river. As the river flows, ink will move downstream in a "pulse" via advection, as the water's movement itself transports the ink. If added to a lake without significant bulk water flow, the ink would simply disperse outwards from its source in a diffusive manner, which is not advection. Note that as it moves downstream, the "pulse" of ink will also spread via diffusion. The sum of these processes is called convection.

The advection equation

In Cartesian coordinates the advection operator is

where is the velocity field, and is the del operator (note that Cartesian coordinates are used here).

The advection equation for a conserved quantity described by a scalar field is expressed mathematically by a continuity equation:

where is the divergence operator and again is the velocity vector field. Frequently, it is assumed that the flow is incompressible, that is, the velocity field satisfies

In this case, is said to be solenoidal. If this is so, the above equation can be rewritten as

<math="block"> \frac{\partial\psi}{\partial t} +{\mathbf u}\cdot\nabla\psi =0 </math>

In particular, if the flow is steady, then

which shows that is constant along a streamline.

If a vector quantity (such as a magnetic field) is being advected by the solenoidal velocity field , the advection equation above becomes:

Here, is a vector field instead of the scalar field .

Solving the equation

A simulation of the advection equation where u = (sin t, cos t) is solenoidal. GaussianUpwind2D.gif
A simulation of the advection equation where u = (sin t, cos t) is solenoidal.

The advection equation is not simple to solve numerically: the system is a hyperbolic partial differential equation, and interest typically centers on discontinuous "shock" solutions (which are notoriously difficult for numerical schemes to handle).

Even with one space dimension and a constant velocity field, the system remains difficult to simulate. The equation becomes

where is the scalar field being advected and is the component of the vector .

Treatment of the advection operator in the incompressible Navier–Stokes equations

According to Zang, [2] numerical simulation can be aided by considering the skew-symmetric form for the advection operator.

where

and is the same as above.

Since skew symmetry implies only imaginary eigenvalues, this form reduces the "blow up" and "spectral blocking" often experienced in numerical solutions with sharp discontinuities. [3]

Using vector calculus identities, these operators can also be expressed in other ways, available in more software packages for more coordinate systems.

This form also makes visible that the skew-symmetric operator introduces error when the velocity field diverges. Solving the advection equation by numerical methods is very challenging and there is a large scientific literature about this.

See also

Related Research Articles

In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of mass-energy, conservation of linear momentum, conservation of angular momentum, and conservation of electric charge. There are also many approximate conservation laws, which apply to such quantities as mass, parity, lepton number, baryon number, strangeness, hypercharge, etc. These quantities are conserved in certain classes of physics processes, but not in all.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Potential flow</span> Velocity field as the gradient of a scalar function

In fluid dynamics, potential flow is the ideal flow pattern of an inviscid fluid. Potential flows are described and determined by mathematical methods.

The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid. The governing equation is:

In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

<span class="mw-page-title-main">Stream function</span> Function for incompressible divergence-free flows in two dimensions

The stream function is defined for incompressible (divergence-free) flows in two dimensions – as well as in three dimensions with axisymmetry. The flow velocity components can be expressed as the derivatives of the scalar stream function. The stream function can be used to plot streamlines, which represent the trajectories of particles in a steady flow. The two-dimensional Lagrange stream function was introduced by Joseph Louis Lagrange in 1781. The Stokes stream function is for axisymmetrical three-dimensional flow, and is named after George Gabriel Stokes.

A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations.

In fluid mechanics, or more generally continuum mechanics, incompressible flow refers to a flow in which the material density is constant within a fluid parcel—an infinitesimal volume that moves with the flow velocity. An equivalent statement that implies incompressibility is that the divergence of the flow velocity is zero.

In continuum mechanics, the material derivative describes the time rate of change of some physical quantity of a material element that is subjected to a space-and-time-dependent macroscopic velocity field. The material derivative can serve as a link between Eulerian and Lagrangian descriptions of continuum deformation.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

The following are important identities involving derivatives and integrals in vector calculus.

In quantum mechanics, the probability current is a mathematical quantity describing the flow of probability. Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid. It is a real vector that changes with space and time. Probability currents are analogous to mass currents in hydrodynamics and electric currents in electromagnetism. As in those fields, the probability current is related to the probability density function via a continuity equation. The probability current is invariant under gauge transformation.

In fluid mechanics, potential vorticity (PV) is a quantity which is proportional to the dot product of vorticity and stratification. This quantity, following a parcel of air or water, can only be changed by diabatic or frictional processes. It is a useful concept for understanding the generation of vorticity in cyclogenesis, especially along the polar front, and in analyzing flow in the ocean.

The intent of this article is to highlight the important points of the derivation of the Navier–Stokes equations as well as its application and formulation for different families of fluids.

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

The convection–diffusion equation is a combination of the diffusion and convection (advection) equations, and describes physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. Depending on context, the same equation can be called the advection–diffusion equation, drift–diffusion equation, or (generic) scalar transport equation.

In fluid dynamics, The projection method is an effective means of numerically solving time-dependent incompressible fluid-flow problems. It was originally introduced by Alexandre Chorin in 1967 as an efficient means of solving the incompressible Navier-Stokes equations. The key advantage of the projection method is that the computations of the velocity and the pressure fields are decoupled.

<span class="mw-page-title-main">Stokes' theorem</span> Theorem in vector calculus

Stokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls or simply the curl theorem, is a theorem in vector calculus on . Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical theorem of Stokes can be stated in one sentence: The line integral of a vector field over a loop is equal to its curl through the enclosed surface. It is illustrated in the figure, where the direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule. For the right hand the fingers circulate along ∂Σ and the thumb is directed along n.

In fluid dynamics, Beltrami flows are flows in which the vorticity vector and the velocity vector are parallel to each other. In other words, Beltrami flow is a flow where Lamb vector is zero. It is named after the Italian mathematician Eugenio Beltrami due to his derivation of the Beltrami vector field, while initial developments in fluid dynamics were done by the Russian scientist Ippolit S. Gromeka in 1881.

References

  1. Yin, C.; Kareem, A. (2014). "Probability advection for stochastic dynamic systems. Part I: Theory". In Deodatis, George; Ellingwood, Bruce R.; Frangopol, Dan M. (eds.). Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures. CRC Press. pp. 1149–1156. ISBN   978-1-138-00086-5.
  2. Zang, Thomas (1991). "On the rotation and skew-symmetric forms for incompressible flow simulations". Applied Numerical Mathematics. 7: 27–40. Bibcode:1991ApNM....7...27Z. doi:10.1016/0168-9274(91)90102-6.
  3. Boyd, John P. (2000). Chebyshev and Fourier Spectral Methods 2nd edition. Dover. p. 213.