Air cycle machine

Last updated

An air cycle machine (ACM) is the refrigeration unit of the environmental control system (ECS) used in pressurized gas turbine-powered aircraft. Normally an aircraft has two or three of these ACM. Each ACM and its components are often referred as an air conditioning pack. The air cycle cooling process uses air instead of a phase changing material such as Freon in the gas cycle. No condensation or evaporation of a refrigerant is involved, and the cooled air output from the process is used directly for cabin ventilation or for cooling electronic equipment.

Contents

History

Air cycle machines were first developed in the 19th century for providing chilling on ships. The technique is a reverse Brayton cycle (the thermodynamic cycle of a gas turbine engine) and is also known as a Bell Coleman cycle or "Air-Standard Refrigeration Cycle".

Technical details

The air cycle machine aboard a Sukhoi Superjet 100 Air conditioning systems of a Sukhoi Superjet.jpg
The air cycle machine aboard a Sukhoi Superjet 100

The usual compression, cooling and expansion seen in any refrigeration cycle is accomplished in the ACM by a centrifugal compressor, two air-to-air heat exchangers and an expansion turbine.

Bleed air from the engines, an auxiliary power unit, or a ground source, which can be in excess of 150 °C and at a pressure of perhaps 32 psi (220 kPa), [1] is directed into a primary heat exchanger. Outside air at ambient temperature and pressure is used as the coolant in this air-to-air heat exchanger. Once the hot air has been cooled, it is then compressed by the centrifugal compressor. This compression heats the air (the maximum air temperature at this point is about 250 °C) and it is sent to the secondary heat exchanger, which again uses outside air as the coolant. The pre-cooling through the first heat exchanger increases the efficiency of the ACM because it lowers the temperature of the air entering the compressor, so that less work is required to compress a given air mass (the energy required to compress a gas by a given ratio rises as the temperature of the incoming gas rises).

At this point, the temperature of the compressed cooled air is somewhat greater than the ambient temperature of the outside air. The compressed, cooled air then travels through the expansion turbine which extracts heat from the air as it expands, cooling it to below ambient temperature (down to −20 °C or −30 °C). It is possible for the ACM to produce air cooled to less than 0 °C even when outside air temperature is high (as might be experienced with the aircraft stationary on the ground in a hot climate). [2] The work extracted by the expansion turbine is transmitted by a shaft to spin the pack's centrifugal compressor and an inlet fan which draws in the external air for the heat exchangers during ground running; ram air is used in flight. The power for the air conditioning pack comes from the reduction of the pressure of the incoming bleed air relative to that of the cooled air exiting the system; typical differentials are from about 30 psi or 210 kPa to about 11 psi or 76 kPa. [1]

The next step is to dehumidify the air. Cooling the air has caused any water vapor it contains to condense into fog, which can be removed using a cyclonic separator. Historically, the water extracted by the separator was simply dumped overboard, but newer ACMs spray the water into the outside-air intakes for each heat exchanger, which gives the coolant a greater heat capacity and improves efficiency. (It also means that running the ACM on an airplane parked on the tarmac does not leave a puddle.)

The air can now be combined in a mixing chamber with a small amount of non-conditioned engine bleed air. This warms the air to the desired temperature, and then the air is vented into the cabin or to electronic equipment.

Manufacturers

Major manufacturers of ACM are Honeywell Aerospace, [3] Liebherr Aerospace, [4] Collins Aerospace, [5] and PBS Velka Bites. [6]

Nomenclature

Types

The types of air cycle machines may be identified as:

Abbreviated Form

The equipment is referred to variously as PAC, air conditioning pack, or A/C pack, but there is a lack of consistency and agreement as to the derivations and meanings:

See also

Related Research Articles

Air compressor Machine to pressurize air

An air compressor is a pneumatic device that converts power into potential energy stored in pressurized air. By one of several methods, an air compressor forces more and more air into a storage tank, increasing the pressure. When the tank's pressure reaches its engineered upper limit, the air compressor shuts off. The compressed air, then, is held in the tank until called into use. The kinetic energy provided by the compressed air can be used for a variety of applications such as pneumatic tool as it is released air and the tank depressurizes. When tank pressure reaches its lower limit, the air compressor turns on again and re-pressurizes the tank. An air compressor must be differentiated from a pump because it works for any gas/air, while pumps work on a liquid.

Thermostat Component which maintains a setpoint temperature

A thermostat is a regulating device component which senses the temperature of a physical system and performs actions so that the system's temperature is maintained near a desired setpoint.

Brayton cycle Thermodynamic cycle

The Brayton cycle is a thermodynamic cycle that describes the operation of certain heat engines that have air or some other gas as their working fluid. The original Brayton engines used a piston compressor and piston expander, but modern gas turbine engines and airbreathing jet engines also follow the Brayton cycle. Although the cycle is usually run as an open system, it is conventionally assumed for the purposes of thermodynamic analysis that the exhaust gases are reused in the intake, enabling analysis as a closed system.

Compressor Machine to increase pressure of gas by reducing its volume

A compressor is a mechanical device that increases the pressure of a gas by reducing its volume. An air compressor is a specific type of gas compressor.

For fluid power, a working fluid is a gas or liquid that primarily transfers force, motion, or mechanical energy. In hydraulics, water or hydraulic fluid transfers force between hydraulic components such as hydraulic pumps, hydraulic cylinders, and hydraulic motors that are assembled into hydraulic machinery, hydraulic drive systems, etc. In pneumatics, the working fluid is air or another gas which transfers force between pneumatic components such as compressors, vacuum pumps, pneumatic cylinders, and pneumatic motors. In pneumatic systems, the working gas also stores energy because it is compressible.

Chiller Machine that removes heat from a liquid coolant via vapor compression

A chiller is a machine that removes heat from a liquid coolant via a vapor-compression, adsorption refrigeration, or absorption refrigeration cycles. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream. As a necessary by-product, refrigeration creates waste heat that must be exhausted to ambience, or for greater efficiency, recovered for heating purposes. Vapor compression chillers may use any of a number of different types of compressors. Most common today are the hermetic scroll, semi-hermetic screw, or centrifugal compressors. The condensing side of the chiller can be either air or water cooled. Even when liquid cooled, the chiller is often cooled by an induced or forced draft cooling tower. Absorption and adsorption chillers require a heat source to function.

Bleed air is compressed air taken from the compressor stage of a gas turbine upstream of its fuel-burning sections. Automatic air supply and cabin pressure controller (ASCPCs) valves bleed air from high or low stage engine compressor sections. Low stage air is used during high power setting operation, and high during descent and other low power setting operations. Bleed air from that system can be utilized for internal cooling of the engine, cross-starting another engine, engine and airframe anti-icing, cabin pressurization, pneumatic actuators, air-driven motors, pressurizing the hydraulic reservoir, and waste and water storage tanks. Some engine maintenance manuals refer to such systems as "customer bleed air". Bleed air is valuable in an aircraft for two properties: high temperature and high pressure.

Environmental control system Aircraft system which maintains internal pressurization, climate, air supply, and more

In aeronautics, an environmental control system (ECS) of an aircraft is an essential component which provides air supply, thermal control and cabin pressurization for the crew and passengers. Additional functions include the cooling of avionics, smoke detection, and fire suppression.

Absorption refrigerator Single pressure absorption refrigeration

An absorption refrigerator is a refrigerator that uses a heat source to provide the energy needed to drive the cooling process. The system uses two coolants, the first of which performs evaporative cooling and is then absorbed into the second coolant; heat is needed to reset the two coolants to their initial states. The principle can also be used to air-condition buildings using the waste heat from a gas turbine or water heater. Using waste heat from a gas turbine makes the turbine very efficient because it first produces electricity, then hot water, and finally, air-conditioning—trigeneration. Absorption refrigerators are commonly used in recreational vehicles (RVs), campers, and caravans because the heat required to power them can be provided by a propane fuel burner, by a low-voltage DC electric heater or by a mains-powered electric heater. Unlike more common vapor-compression refrigeration systems, an absorption refrigerator can be produced with no moving parts other than the coolants.

Economizers, or economisers (UK), are mechanical devices intended to reduce energy consumption, or to perform useful function such as preheating a fluid. The term economizer is used for other purposes as well. Boiler, power plant, heating, refrigeration, ventilating, and air conditioning (HVAC) uses are discussed in this article. In simple terms, an economizer is a heat exchanger.

Rotary-screw compressor Gas compressor using a rotary positive-displacement mechanism

A rotary-screw compressor is a type of gas compressor, such as an air compressor, that uses a rotary-type positive-displacement mechanism. These compressors are common in industrial applications and replace more traditional piston compressors where larger volumes of compressed gas are needed, e.g. for large refrigeration cycles such as chillers, or for compressed air systems to operate air-driven tools such as jackhammers and impact wrenches. For smaller rotor sizes the inherent leakage in the rotors becomes much more significant, leading to this type of mechanism being less suitable for smaller compressors than piston compressors.

Vapor-compression refrigeration Refrigeration process

Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems. Cascade refrigeration systems may also be implemented using two compressors.

Turboexpander

A turboexpander, also referred to as a turbo-expander or an expansion turbine, is a centrifugal or axial-flow turbine, through which a high-pressure gas is expanded to produce work that is often used to drive a compressor or generator.

Heat pump and refrigeration cycle Mathematical models of heat pumps and refrigeration

Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pump, air conditioning and refrigeration systems. A heat pump is a mechanical system that allows for the transmission of heat from one location at a lower temperature to another location at a higher temperature. Thus a heat pump may be thought of as a "heater" if the objective is to warm the heat sink, or a "refrigerator" or “cooler” if the objective is to cool the heat source. In either case, the operating principles are similar. Heat is moved from a cold place to a warm place.

Components of jet engines Brief description of components needed for jet engines

This article briefly describes the components and systems found in jet engines.

An air separation plant separates atmospheric air into its primary components, typically nitrogen and oxygen, and sometimes also argon and other rare inert gases.

Cryogenic oxygen plant Industrial facility that creates molecular oxygen at relatively high purity

A cryogenic oxygen plant is an industrial facility that creates molecular oxygen at relatively high purity. Oxygen is the most common element in the earth's crust and the second largest industrial gas. This process was pioneered by Dr. Carl von Linde in 1902.

Automobile air conditioning System to cool the air in a vehicle

Automobile air conditioning systems use air conditioning to cool the air in a vehicle.

Turbine inlet air cooling

Turbine inlet air cooling is a group of technologies and techniques consisting of cooling down the intake air of the gas turbine. The direct consequence of cooling the turbine inlet air is power output augmentation. It may also improve the energy efficiency of the system. This technology is widely used in hot climates with high ambient temperatures that usually coincides with on-peak demand period.

Compressed air dryers are special types of filter systems that are specifically designed to remove the water that is inherent in compressed air. The process of compressing air raises its temperature and concentrates atmospheric contaminants, primarily water vapor. Consequently, the compressed air is generally at an elevated temperature and 100% relative humidity. As the compressed air cools, water vapor condenses into the tank(s), pipes, hoses and tools that are downstream from the compressor. Water vapor is removed from compressed air to prevent condensation from occurring and to prevent moisture from interfering in sensitive industrial processes.

References

  1. 1 2 Boeing. "Commercial Airliner Environmental Control System" (PDF). Archived from the original (PDF) on 2011-05-24.
  2. UK COT Secretariat, discussion paper on the cabin air environment Archived 2006-09-25 at the Wayback Machine
  3. "Air Management Systems". aerospace.honeywell.com. Retrieved 2022-08-25.
  4. "Air conditioning systems by Liebherr-Transportation Systems". www.liebherr.com. Retrieved 2022-08-25.
  5. "Thermal Management Systems". Collins Aerospace. Retrieved August 25, 2022.{{cite web}}: CS1 maint: url-status (link)
  6. "Environmental Control Systems". PBS. Retrieved August 25, 2022.{{cite web}}: CS1 maint: url-status (link)