Artifact (software development)

Last updated

An artifact is one of many kinds of tangible by-products produced during the development of software. Some artifacts (e.g., use cases, class diagrams, and other Unified Modeling Language (UML) models, requirements and design documents) help describe the function, architecture, and design of software. Other artifacts are concerned with the process of development itself—such as project plans, business cases, and risk assessments.

Contents

The term artifact in connection with software development is largely associated with specific development methods or processes e.g., Unified Process. This usage of the term may have originated with those methods.

Build tools often refer to source code compiled for testing as an artifact, because the executable is necessary to carrying out the testing plan. Without the executable to test, the testing plan artifact is limited to non-execution based testing. In non-execution based testing, the artifacts are the walkthroughs, inspections and correctness proofs. On the other hand, execution based testing requires at minimum two artifacts: a test suite and the executable. Artifact occasionally may refer to the released code (in the case of a code library) or released executable (in the case of a program) produced, but more commonly an artifact is the byproduct of software development rather than the product itself. Open source code libraries often contain a testing harness to allow contributors to ensure their changes do not cause regression bugs in the code library.

Much of what are considered artifacts is software documentation.

In end-user development an artifact is either an application or a complex data object that is created by an end-user without the need to know a general programming language. Artifacts describe automated behavior or control sequences, such as database requests or grammar rules, [1] or user-generated content.

Artifacts vary in their maintainability. Maintainability is primarily affected by the role the artifact fulfills. The role can be either practical or symbolic. In the earliest stages of software development, artifacts may be created by the design team to serve a symbolic role to show the project sponsor how serious the contractor is about meeting the project's needs. Symbolic artifacts often convey information poorly, but are impressive-looking. Symbolic enhance understanding. Generally speaking, Illuminated Scrolls are also considered unmaintainable due to the diligence it requires to preserve the symbolic quality. For this reason, once Illuminated Scrolls are shown to the project sponsor and approved, they are replaced by artifacts which serve a practical role. Practical artifacts usually need to be maintained throughout the project lifecycle, and, as such, are generally highly maintainable.

Artifacts are significant from a project management perspective as deliverables. The deliverables of a software project are likely to be the same as its artifacts with the addition of the software itself.

The sense of artifacts as byproducts is similar to the use of the term artifact in science to refer to something that arises from the process in hand rather than the issue itself, i.e., a result of interest that stems from the means rather than the end.

To collect, organize and manage artifacts, a Software development folder may be utilized.

// POST: api/Todo [HttpPost] public async Task<ActionResult<TodoItem>> PostTodoItem(TodoItem item) {     _context.TodoItems.Add(item);     await _context.SaveChangesAsync();       return CreatedAtAction(nameof(GetTodoItem), new { id = item.Id }, item); }

See also

Related Research Articles

Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic.

Software testing is the act of examining the artifacts and the behavior of the software under test by validation and verification. Software testing can also provide an objective, independent view of the software to allow the business to appreciate and understand the risks of software implementation. Test techniques include, but are not necessarily limited to:

In computer programming, unit testing is a software testing method by which individual units of source code—sets of one or more computer program modules together with associated control data, usage procedures, and operating procedures—are tested to determine whether they are fit for use. It is a standard step in development and implementation approaches such as Agile.

The rational unified process (RUP) is an iterative software development process framework created by the Rational Software Corporation, a division of IBM since 2003. RUP is not a single concrete prescriptive process, but rather an adaptable process framework, intended to be tailored by the development organizations and software project teams that will select the elements of the process that are appropriate for their needs. RUP is a specific implementation of the Unified Process.

In software and systems engineering, the phrase use case is a polyseme with two senses:

  1. A usage scenario for a piece of software; often used in the plural to suggest situations where a piece of software may be useful.
  2. A potential scenario in which a system receives an external request and responds to it.

Model Driven Architecture (MDA) is a software design approach for the development of software systems. It provides a set of guidelines for the structuring of specifications, which are expressed as models. Model Driven Architecture is a kind of domain engineering, and supports model-driven engineering of software systems. It was launched by the Object Management Group (OMG) in 2001.

Round-trip engineering (RTE) in the context of model-driven architecture is a functionality of software development tools that synchronizes two or more related software artifacts, such as, source code, models, configuration files, documentation, etc. between each other. The need for round-trip engineering arises when the same information is present in multiple artifacts and when an inconsistency may arise in case some artifacts are updated. For example, some piece of information was added to/changed in only one artifact and, as a result, it became missing in/inconsistent with the other artifacts.

In software testing, test automation is the use of software separate from the software being tested to control the execution of tests and the comparison of actual outcomes with predicted outcomes. Test automation can automate some repetitive but necessary tasks in a formalized testing process already in place, or perform additional testing that would be difficult to do manually. Test automation is critical for continuous delivery and continuous testing.

<span class="mw-page-title-main">Business process modeling</span> Activity of representing processes of an enterprise

Business process modeling (BPM) in business process management and systems engineering is the activity of representing processes of an enterprise, so that the current business processes may be analyzed, improved, and automated. BPM is typically performed by business analysts, who provide expertise in the modeling discipline; by subject matter experts, who have specialized knowledge of the processes being modeled; or more commonly by a team comprising both. Alternatively, the process model can be derived directly from events' logs using process mining tools.

Maven is a build automation tool used primarily for Java projects. Maven can also be used to build and manage projects written in C#, Ruby, Scala, and other languages. The Maven project is hosted by The Apache Software Foundation, where it was formerly part of the Jakarta Project.

<span class="mw-page-title-main">Model-based testing</span>

Model-based testing is an application of model-based design for designing and optionally also executing artifacts to perform software testing or system testing. Models can be used to represent the desired behavior of a system under test (SUT), or to represent testing strategies and a test environment. The picture on the right depicts the former approach.

Object-oriented analysis and design (OOAD) is a technical approach for analyzing and designing an application, system, or business by applying object-oriented programming, as well as using visual modeling throughout the software development process to guide stakeholder communication and product quality.

<span class="mw-page-title-main">Deployment diagram</span> Models the physical deployment of artifacts on nodes

A deployment diagram in the Unified Modeling Language models the physical deployment of artifacts on nodes. To describe a web site, for example, a deployment diagram would show what hardware components ("nodes") exist, what software components ("artifacts") run on each node, and how the different pieces are connected.

Model-driven engineering (MDE) is a software development methodology that focuses on creating and exploiting domain models, which are conceptual models of all the topics related to a specific problem. Hence, it highlights and aims at abstract representations of the knowledge and activities that govern a particular application domain, rather than the computing concepts.

Executable UML is both a software development method and a highly abstract software language. It was described for the first time in 2002 in the book "Executable UML: A Foundation for Model-Driven Architecture". The language "combines a subset of the UML graphical notation with executable semantics and timing rules." The Executable UML method is the successor to the Shlaer–Mellor method.

<span class="mw-page-title-main">Unified Process</span> Object oriented software development process framework

The unified software development process or unified process is an iterative and incremental software development process framework. The best-known and extensively documented refinement of the unified process is the rational unified process (RUP). Other examples are OpenUP and agile unified process.

Performance engineering encompasses the techniques applied during a systems development life cycle to ensure the non-functional requirements for performance will be met. It may be alternatively referred to as systems performance engineering within systems engineering, and software performance engineering or application performance engineering within software engineering.

Goal-Driven Software Development Process (GDP) is an iterative and incremental software development technique. Although similar to other modern process models, GDP is primarily focusing on identifying goals before setting the requirements and explicitly utilizing the bottom-up design approach.

<span class="mw-page-title-main">Artifact (UML)</span>

An artifact in the Unified Modeling Language (UML) is the specification of a physical piece of information that is used or produced by a software development process, or by deployment and operation of a system."

<span class="mw-page-title-main">American Fuzzy Lop (software)</span> Software fuzzer that employs genetic algorithms

American Fuzzy Lop (AFL), stylized in all lowercase as american fuzzy lop, is a free software fuzzer that employs genetic algorithms in order to efficiently increase code coverage of the test cases. So far it has detected dozens of significant software bugs in major free software projects, including X.Org Server, PHP, OpenSSL, pngcrush, bash, Firefox, BIND, Qt, and SQLite.

References

  1. H. Lieberman, B. A. Nardi, and D. Wright. Grammex: Defining grammars by example. In ACM conference on Human Factors in Computing Systems (Summary, Demonstrations; CHI 1998), Los Angeles, California, U.S., pp. 11–12. ACM Press, Apr. 1998.

Further reading