Autocatalysis

Last updated

In chemistry, a chemical reaction is said to be autocatalytic if one of the reaction products is also a catalyst for the same reaction. [1] Many forms of autocatalysis are recognized. [2] [3]

Contents

A set of chemical reactions can be said to be "collectively autocatalytic" if a number of those reactions produce, as reaction products, catalysts for enough of the other reactions that the entire set of chemical reactions is self-sustaining given an input of energy and food molecules (see autocatalytic set).

Examples

Acid-catalyzed hydrolysis of esters produces carboxylic acids that also catalyze the same reaction. Indeed, the observation of an accelerating hydrolysis of gamma valerolactone to gamma-hydroxyvaleric acid led to the introduction of the concept of autocatalysis in 1890. [4]

The oxidation of hydrocarbons by air or oxygen is the basis of autoxidation. Like many radical reactions, the rate vs time plot shows a sigmoidal behavior, characteristic of autocatalysis. [5] Many reactions of organic compounds with halogen involve autocatalytic radical mechanisms. For example the reaction of acetophenone with bromine to give phenacyl bromide.

Oscillating reactions such as the Belousov–Zhabotinsky reaction are more complicated examples that involve autocatalysis. [2] In such reactions the concentrations of some intermediates oscillate, as does the rate of formation of products. Other notable examples are the Lotka–Volterra equations for the predator-prey model, and the Brusselator model.

Autocatalysis applies also to reactions involving solids. Crystal growth provide dramatic examples of autocatalysis: the growth rate depends on the surface area of the growing crystal. The growth of metal films from solution using the technique of electroless plating is autocatalytic. The rate of plating accelerates after some deposition has occurred, i.e., nucleation. [6]

Mathematical description

Sigmoid variation of product concentration in autocatalytic reactions Sigmoid curve for an autocatalytical reaction.jpg
Sigmoid variation of product concentration in autocatalytic reactions

Autocatalytic reactions are those in which at least one of the products is also a reactant. A simple autocatalytic reaction can be written [3]

with the rate equations (for an elementary reaction)

.

This reaction is one in which a molecule of species A interacts with a molecule of species B. The A molecule is converted into a B molecule. The final product consists of the original B molecule plus the B molecule created in the reaction.

The key feature of these rate equations is that they are nonlinear; the second term on the right varies as the square of the concentration of B. This feature can lead to multiple fixed points of the system, much like a quadratic equation can have two roots. Multiple fixed points allow for multiple states of the system. A system existing in multiple macroscopic states is more orderly (has lower entropy) than a system in a single state.

The concentrations of A and B vary in time according to

and

.

For an irreversible reaction (i.e. ) [3] [7]

and

.

The graph for these equations is a sigmoid curve (specifically a logistic function), which is typical for autocatalytic reactions: these chemical reactions proceed slowly at the start (the induction period) because there is little catalyst present, the rate of reaction increases progressively as the reaction proceeds as the amount of catalyst increases and then it again slows down as the reactant concentration decreases. If the concentration of a reactant or product in an experiment follows a sigmoid curve, the reaction may be autocatalytic.

These kinetic equations apply for example to the acid-catalyzed hydrolysis of some esters to carboxylic acids and alcohols. [7] There must be at least some acid present initially to start the catalyzed mechanism; if not the reaction must start by an alternate uncatalyzed path which is usually slower. The above equations (which do not consider the alternate pathway) for the catalyzed mechanism would imply that the concentration of acid product remains zero forever. [7]

Asymmetric autocatalysis

Asymmetric autocatalysis occurs when the reaction product is chiral and thus serves as a catalyst for its own production. Reactions of this type, such as the Soai reaction, have the property that they can amplify a very small enantiomeric excess into a large one. [8] In another example, sodium chlorate crystallizes as an equilibrium mixture of left- and right-handed crystals. When seeded appropriated, saturated solutions of this salt (which is optically inactive), will produce batches of single enantiomeric crystals. [9]

Possible role in origin of life

Autocatalytic cycle of formose reaction showing how glyceraldehyde can be both the catalyst and the product of one portion of this complex reaction type. FormoseRxn.svg
Autocatalytic cycle of formose reaction showing how glyceraldehyde can be both the catalyst and the product of one portion of this complex reaction type.

An early example of autocatalysis is the formose reaction, in which formaldehyde and base produce sugars and related polyols. Characteristic of autocatalysis, this reaction rate is extremely slow initially but accelerates with time. This kind of reaction has often been cited as being relevant to the origin of life. [2]

Autocatalysis is one explanation for abiogenesis. [10] [11] [12] Illustrative is the reaction amino adenosine and pentafluorophenyl ester in the presence of amino adenosine triacid ester (AATE). This experiment demonstrated that autocatalysts could exhibit competition within a population of entities with heredity, which could be interpreted as a rudimentary form of natural selection, and that certain environmental changes (such as irradiation) could alter the chemical structure of some of these self-replicating molecules (an analog for mutation) in such ways that could either boost or interfere with its ability to react, thus boosting or interfering with its ability to replicate and spread in the population. [13]

See also

Related Research Articles

In a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the system. This state results when the forward reaction proceeds at the same rate as the reverse reaction. The reaction rates of the forward and backward reactions are generally not zero, but they are equal. Thus, there are no net changes in the concentrations of the reactants and products. Such a state is known as dynamic equilibrium.

<span class="mw-page-title-main">Catalysis</span> Process of increasing the rate of a chemical reaction

Catalysis is the increase in rate of a chemical reaction due to an added substance known as a catalyst. Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quickly, very small amounts of catalyst often suffice; mixing, surface area, and temperature are important factors in reaction rate. Catalysts generally react with one or more reactants to form intermediates that subsequently give the final reaction product, in the process of regenerating the catalyst.

<span class="mw-page-title-main">Chemical reaction</span> Process that results in the interconversion of chemical species

A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an energy change as new products are generated. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei, and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.

In chemistry, a dynamic equilibrium exists once a reversible reaction occurs. Substances transition between the reactants and products at equal rates, meaning there is no net change. Reactants and products are formed at such a rate that the concentration of neither changes. It is a particular example of a system in a steady state.

<span class="mw-page-title-main">Reaction rate</span> Speed at which a chemical reaction takes place

The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. Reaction rates can vary dramatically. For example, the oxidative rusting of iron under Earth's atmosphere is a slow reaction that can take many years, but the combustion of cellulose in a fire is a reaction that takes place in fractions of a second. For most reactions, the rate decreases as the reaction proceeds. A reaction's rate can be determined by measuring the changes in concentration over time.

In chemistry, the law of mass action is the proposition that the rate of a chemical reaction is directly proportional to the product of the activities or concentrations of the reactants. It explains and predicts behaviors of solutions in dynamic equilibrium. Specifically, it implies that for a chemical reaction mixture that is in equilibrium, the ratio between the concentration of reactants and products is constant.

Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is different from chemical thermodynamics, which deals with the direction in which a reaction occurs but in itself tells nothing about its rate. Chemical kinetics includes investigations of how experimental conditions influence the speed of a chemical reaction and yield information about the reaction's mechanism and transition states, as well as the construction of mathematical models that also can describe the characteristics of a chemical reaction.

The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium. However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant.

In chemical kinetics, the overall rate of a reaction is often approximately determined by the slowest step, known as the rate-determining step or rate-limiting step. For a given reaction mechanism, the prediction of the corresponding rate equation is often simplified by using this approximation of the rate-determining step.

In chemistry, the rate equation is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters only. For many reactions, the initial rate is given by a power law such as

<span class="mw-page-title-main">Step-growth polymerization</span> Type of polymerization reaction mechanism

In polymer chemistry, step-growth polymerization refers to a type of polymerization mechanism in which bi-functional or multifunctional monomers react to form first dimers, then trimers, longer oligomers and eventually long chain polymers. Many naturally-occurring and some synthetic polymers are produced by step-growth polymerization, e.g. polyesters, polyamides, polyurethanes, etc. Due to the nature of the polymerization mechanism, a high extent of reaction is required to achieve high molecular weight. The easiest way to visualize the mechanism of a step-growth polymerization is a group of people reaching out to hold their hands to form a human chain—each person has two hands. There also is the possibility to have more than two reactive sites on a monomer: In this case branched polymers production take place.

In chemistry, molecularity is the number of molecules that come together to react in an elementary (single-step) reaction and is equal to the sum of stoichiometric coefficients of reactants in the elementary reaction with effective collision and correct orientation. Depending on how many molecules come together, a reaction can be unimolecular, bimolecular or even trimolecular.

<span class="mw-page-title-main">Acid catalysis</span> Chemical reaction

In acid catalysis and base catalysis, a chemical reaction is catalyzed by an acid or a base. By Brønsted–Lowry acid–base theory, the acid is the proton (hydrogen ion, H+) donor and the base is the proton acceptor. Typical reactions catalyzed by proton transfer are esterifications and aldol reactions. In these reactions, the conjugate acid of the carbonyl group is a better electrophile than the neutral carbonyl group itself. Depending on the chemical species that act as the acid or base, catalytic mechanisms can be classified as either specific catalysis and general catalysis. Many enzymes operate by general catalysis.

Homochirality is a uniformity of chirality, or handedness. Objects are chiral when they cannot be superposed on their mirror images. For example, the left and right hands of a human are approximately mirror images of each other but are not their own mirror images, so they are chiral. In biology, 19 of the 20 natural amino acids are homochiral, being L-chiral (left-handed), while sugars are D-chiral (right-handed). Homochirality can also refer to enantiopure substances in which all the constituents are the same enantiomer, but some sources discourage this use of the term.

<span class="mw-page-title-main">Enzyme kinetics</span> Study of biochemical reaction rates catalysed by an enzyme

Enzyme kinetics is the study of the rates of enzyme-catalysed chemical reactions. In enzyme kinetics, the reaction rate is measured and the effects of varying the conditions of the reaction are investigated. Studying an enzyme's kinetics in this way can reveal the catalytic mechanism of this enzyme, its role in metabolism, how its activity is controlled, and how a drug or a modifier might affect the rate.

Reactions on surfaces are reactions in which at least one of the steps of the reaction mechanism is the adsorption of one or more reactants. The mechanisms for these reactions, and the rate equations are of extreme importance for heterogeneous catalysis. Via scanning tunneling microscopy, it is possible to observe reactions at the solid gas interface in real space, if the time scale of the reaction is in the correct range. Reactions at the solid–gas interface are in some cases related to catalysis.

In organic chemistry, the Hammett equation describes a linear free-energy relationship relating reaction rates and equilibrium constants for many reactions involving benzoic acid derivatives with meta- and para-substituents to each other with just two parameters: a substituent constant and a reaction constant. This equation was developed and published by Louis Plack Hammett in 1937 as a follow-up to qualitative observations in his 1935 publication.

<span class="mw-page-title-main">Transition state theory</span> Theory describing the reaction rates of elementary chemical reactions

In chemistry, transition state theory (TST) explains the reaction rates of elementary chemical reactions. The theory assumes a special type of chemical equilibrium (quasi-equilibrium) between reactants and activated transition state complexes.

The Taft equation is a linear free energy relationship (LFER) used in physical organic chemistry in the study of reaction mechanisms and in the development of quantitative structure–activity relationships for organic compounds. It was developed by Robert W. Taft in 1952 as a modification to the Hammett equation. While the Hammett equation accounts for how field, inductive, and resonance effects influence reaction rates, the Taft equation also describes the steric effects of a substituent. The Taft equation is written as:

In enantioselective synthesis, a non-linear effect refers to a process in which the enantiopurity of the catalyst or chiral auxiliary does not correspond with the enantiopurity of the product produced. For example: a racemic catalyst would be expected to convert a prochiral substrate into a racemic product, but this is not always the case and a chirally enriched product can be produced instead.

References

  1. "Autocatalytic Reaction". IUPAC Gold Book. 1994.
  2. 1 2 3 Bissette, Andrew J.; Fletcher, Stephen P. (2013). "Mechanisms of Autocatalysis". Angewandte Chemie International Edition. 52 (49): 12800–12826. doi:10.1002/anie.201303822. PMID   24127341.
  3. 1 2 3 Steinfeld J.I., Francisco J.S. and Hase W.L. Chemical Kinetics and Dynamics (2nd ed., Prentice-Hall 1999) pp. 151–2 ISBN   0-13-737123-3
  4. Ostwald W (1890). "Über autokatalyse". Ber. Verh. KGL. Sächs. Ges. Wiss. Leipzig, Math.- Phys. Classe. 42: 189–191.
  5. Denisov, Evgeny (2015). "Hydrocarbon Oxidation". Kirk-Othmer Encyclopedia of Chemical Technology. pp. 1–33. doi:10.1002/0471238961.0825041808150202.a01.pub2. ISBN   9780471238966.
  6. Durkin, Bradley (2016). "Electroless Deposition". Kirk-Othmer Encyclopedia of Chemical Technology. pp. 1–59. doi:10.1002/0471238961.0512050311182112.a01.pub3. ISBN   9780471238966.
  7. 1 2 3 Moore J.W. and Pearson R.G. Kinetics and Mechanism (John Wiley 1981) p.26 ISBN   0-471-03558-0
  8. Blackmond, Donna G. (2020). "Autocatalytic Models for the Origin of Biological Homochirality". Chemical Reviews. 120 (11): 4831–4847. arXiv: 1909.13015 . doi:10.1021/acs.chemrev.9b00557. PMID   31797671.
  9. Buhse, Thomas; Cruz, José-Manuel; Noble-Terán, María E.; Hochberg, David; Ribó, Josep M.; Crusats, Joaquim; Micheau, Jean-Claude (2021). "Spontaneous Deracemizations". Chemical Reviews. 121 (4): 2147–2229. doi:10.1021/acs.chemrev.0c00819. PMID   33464058. S2CID   231640216.
  10. Stuart Kauffman (1995). At Home in the Universe: The Search for the Laws of Self-Organization and Complexity . Oxford University Press. ISBN   978-0-19-509599-9.
  11. Ecology, the Ascendent Perspective", Robert Ulanowicz, Columbia Univ. Press 1997.
  12. Investigations, Stuart Kauffman.
  13. Rebeck, Julius (July 1994). "Synthetic Self-Replicating Molecules". Scientific American. 271 (1): 48–55. Bibcode:1994SciAm.271a..48R. doi:10.1038/scientificamerican0794-48.