Biology of Diptera

Last updated

Diptera is an order of winged insects commonly known as flies. Diptera, which are one of the most successful groups of organisms on Earth, are very diverse biologically. None are truly marine but they occupy virtually every terrestrial niche. Many have co-evolved in association with plants and animals. The Diptera are a very significant group in the decomposition and degeneration of plant and animal matter, are instrumental in the breakdown and release of nutrients back into the soil, and whose larvae supplement the diet of higher agrarian organisms. They are also an important component in food chains.

Contents

The applied significance of the Diptera is as disease vectors, as agricultural pests, as pollinators and as biological control agents.

Habitats

Diptera occur all over the world except in regions with permanent ice-cover. They are found in most land biomes (all 14 WWF major habitat types) including deserts and the tundra. Insects are the most diverse group of Arctic animals (about 3,300species), of which about 50% are Diptera. Palearctic habitats include meadows, prairies, mountain passes, forests, desert oases, seashores, sandy beaches, coastal lagoons, lakes, streams and rivers, bogs, fens, areas (including waters polluted by rotting waste, industrial emissions), urban areas, cattle, horse and poultry farms.

Cave Diptera

see also List of fauna of Batu Caves The Diptera fauna of caves includes species in Sphaeroceridae, Mycetophilidae, Psychodidae, Phoridae, Tipulidae, Trichoceridae, Heleomyzidae, Mycetophilidae and Culicidae. The main sources of food for cave Diptera are other insects, carrion and guano. Most are perhaps only troglophiles. [1]

Desert Diptera

Desert diptera include specialised species of Psychodidae, Nemestrinidae, Therevidae, Scenopinidae and Bombyliidae. These groups are most diverse where dry sandy soils provide a suitable habitat for the larvae.

Freshwater Diptera

Larval stages of Diptera can be found in almost any aquatic or semiaquatic habitat They form an important fraction of the macro zoobenthos of most freshwater ecosystems. families are Chironomidae (very significant), Stratiomyidae, Ephydridae, Dixidae and Tipulidae.

Soil dwelling Diptera

Larval stages of  many Diptera species  can be found in soil and many species developing in other terrestrial habitats such as dung carrion or other pupate in soil. Chironomide, Sciaridae, Cecidomiidae are most abundant in terms of biomass Tipulidae and bibiobidae dominate. [2] Many of them such as Bibionidae significantly may consume substantial amount of annual litter fall [3] and contribute to soil organic matter transformation. [4]

Feeding

Food habits of most species are largely unknown but broad statements may be made. Diptera are important pollinators and plant pests.

Detritivores

Many Diptera are detritivores. Typical are Dryomyza anilis and, notably, Musca domestica .

Flower feeders

Many adult Brachycera feed on flowers notably hover fly which obtain all their protein requirements by feeding on pollen. The Calyptratae exhibit flower feeding in all families except Hippoboscidae Nycterebidae and Glossinidae and in the Acalyptratae the Conopidae are well known flower feeders. Other flower feeding Brachycerous families are Empididae, Stratiomyidae (soldier flies) and the Acroceridae like various members of the Nemestrinidae (tangle-veined flies), Bombyliidae (bee flies) and Tabanidae (horse-fly) are nectar feeders with exceptionally long proboscises, sometimes longer than the entire bodily length of the insect. Flower feeding Nematocera include Bibionidae (March flies) and some species in Tipulidae (Crane flies) and other families. [5] [6]

Predators

Adult Asilidae, Empididae and Scathophagidae feed on other insects, including smaller Diptera, Dolichopodidae and some Ephydridae feed on a variety of animal prey.

Both male and female mosquitoes feed on nectar and plant juices, but in many species the mouthparts of the females are adapted for piercing the skin of animal hosts and feed on blood as ectoparasites. The most important function of blood meals is to obtain proteins as materials for egg production. For females to risk their lives on blood sucking while males abstain, is not a strategy limited to the mosquitoes; it also occurs in some other families, such as the Tabanidae. Most female horse flies feed on mammal blood, but some species are known to feed on birds, amphibians or reptiles. Other bloodfeeding Diptera are Ceratopogonidae Phlebotominae Hippoboscidae, Hydrotaea and Philornis downsi (Muscidae), Spaniopsis and Symphoromyia Rhagionidae. There are no known acalyptrates that are obligate blood-feeders.

Larvae

The larvae of Diptera feed on a diverse array of nutrients ; often these are different from those of adults, for instance the larvae of Syrphidae in which family the adults are flower-feeding are saprotrophs, eating decaying plant or animal matter, or insectivores, eating aphids, thrips, and other plant-sucking insects.

Larval Diptera feed in leaf-litter, in leaves, stems, roots, flower and seed heads of plants, moss, fungi, rotting wood, rotting fruit or other organic matter such as slime, flowing sap, and rotting cacti, carrion, dung, detritus in mammal bird or wasp nests, fine organic material including insect frass and micro-organisms. Many Diptera larvae are predatory, sometimes on the larvae of other Diptera.

Many Agromyzidae are leaf miners. Some Tephritidae are leaf miners or gall formers. The larvae of all Oestridae oestrids are obligate parasites of mammals. (Oestridae include the highest proportion of species whose larvae live as obligate parasites within the bodies of mammals. Most other species prone to cause myiasis are members of related families, such as the Calliphoridae. There are roughly 150 known species worldwide.) Tachinidae larvae are parasitic on other insects. Conopidae larvae are endoparasites of bees and wasps or of cockroaches and calyptrate Diptera, Pyrgotidae larvae are endoparasites of adult scarab beetles. Sciomyzidae larvae are exclusively associated with freshwater and terrestrial snails, or slugs. They feed on snails as predators, parasitoids, or scavengers. Females search out snails for oviposition. Known Odiniidae larvae live in the tunnels of wood-boring larvae of Coleoptera, Lepidoptera, and other Diptera and function as scavengers or predators of the host larvae. Oedoparena larvae feed on barnacles. The larvae of Acroceridae and some Bombyliidae are hypermetamorphic.

Milichiidae especially Pholeomyia and Milichiella Milichiidae are kleptoparasites of predatory invertebrates, and accordingly are commonly known as freeloader flies or jackal flies.

Ant associates

Stylogastrines are obligate associates of some Orthoptera, other Diptera and ants. These flies typically use army ants' raiding columns to flush out their prey, ground-dwelling Orthoptera. Many species of Phoridae are specialist parasitoids of ants, but there are also species in the tropics that are parasitoids of stingless bees. These affected bees are often host to more than one fly larva and some individuals have been found to contain 12 phorid larvae. The subfamily Microdontinae contains slightly more than 400 species of hoverflies (family Syrphidae) and, while diverse, these species share several characteristics by which they differ from other syrphids. The Microdontinae are myrmecophiles, meaning they live in the nests of ants. Larval Microdontinae are scavengers or predators in ant nests.

Adults of many species of the genus Bengalia are kleptoparasitic on ants and will snatch food and pupae being carried by ants or feed on winged termites. [7] [8]

Swarms

Swarm-based mating systems typically involve males flying in swarms to attract patrolling females. Such swarms are often of immense size. Smaller swarms may be around a fixed point called a swarm marker. Swarming occurs in Chironomidae, Bibionidae, Platypezidae, Limoniidae, Thaumatomyia notata , Sepsis fulgens , Bibionidae, Platypezidae, Fanniidae, Coelopidae, Milichiidae and Trichoceridae. Chaoboridae form larval as well as adult swarms.

Mimicry

Many Diptera are mimetic. An instance is Syrphidae often are brightly coloured, with spots, stripes, and bands of yellow or brown covering their bodies. Due to this colouring, and sometimes behaviour patterns, they are often mistaken for wasps or bees; they exhibit Batesian mimicry. The wing pattern of the sciomyzid Trypetoptera punctulata is very similar to some Tephritidae, and might, in fact, mimic the colour pattern of some spiders [9] There are several fly species that look like an ant. At least one species from the little studied Richardiidae genus Sepsisoma mimic ants, particularly the formicine ant Camponotus crassus. Several species of Micropezidae (stilt-legged flies) resemble ants (especially the wingless, haltere-less Badisis ambulans), as do species in the genus Strongylophthalmyia and Syringogaster..Mydidae are mimics of stinging Hymenoptera.

Behaviour

Flies give visual (as distinct from chemical or other) signals during courtship.

Sexual selection and Courtship

Many Diptera exhibit sexual selection and several patterns of sexual shape dimorphism, such as male body elongation, eye stalks, or extensions of the exoskeleton, have evolved repeatedly in the true flies (Diptera). [10] Phytalmia mouldsi uses a resource defense mating system. Deuterophlebia males have extremely long antennae which they employ when contesting territories over running water, waiting for females to hatch.

Families of acalyptrate flies exhibiting morphological development associated with agonistic behaviour include: Clusiidae, Diopsidae, Drosophilidae, Platystomatidae, Tephritidae and Ulidiidae.

Some Empididae have an elaborate courtship ritual in which the male wraps a prey item in silk and presents it to the female to stimulate copulation.

Many observed behaviours remain unstudied.

Parthenogenesis

Among the documented species of dipterans, nearly 150 are presently known to employ parthenogenetic reproduction, and this number is likely a gross underestimate [11] . In cases of parthenogenetic reproduction where meiosis is maintained the particular mechanism involved is often automixis [11] . The elements of meiosis that are retained in automixis are: (1) pairing of homologous chromosomes, (2) DNA double-strand break formation and (3) homologous recombinational repair at prophase I [12] . These features of meiosis are considered to be adaptations for repair of DNA damage [12] .

Bioluminescence

Around a dozen Keroplatidae species and Orfelia fultoni are unique among flies in displaying bioluminescence. In some species this is restricted to the larval stage but in others this feature is retained by the pupae and adults. It has been suggested that the ability to produce their own light is used by some predatory larvae as a lure for potential prey, although it also obviously makes themselves more susceptible to predation or parasitism. [13]

See also

Notes

  1. René Jeannel, 1940 Faune cavernicole de la France (The Fauna of the Caves of France)
  2. Frouz, Jan (1999-06-01). "Use of soil dwelling Diptera (Insecta, Diptera) as bioindicators: a review of ecological requirements and response to disturbance". Agriculture, Ecosystems & Environment. 74 (1–3): 167–186. doi:10.1016/S0167-8809(99)00036-5. ISSN   0167-8809.
  3. Frouz, Jan; Jedlička, Pavel; Šimáčková, Hana; Lhotáková, Zuzana (2015-11-01). "The life cycle, population dynamics, and contribution to litter decomposition of Penthetria holosericea (Diptera: Bibionidae) in an alder forest". European Journal of Soil Biology. 71: 21–27. doi:10.1016/j.ejsobi.2015.10.002. ISSN   1164-5563.
  4. Frouz, Jan; Špaldoňová, Alexandra; Lhotáková, Zuzana; Cajthaml, Tomáš (2015-12-01). "Major mechanisms contributing to the macrofauna-mediated slow down of litter decomposition". Soil Biology and Biochemistry. 91: 23–31. doi:10.1016/j.soilbio.2015.08.024. ISSN   0038-0717.
  5. Willemstein, S.C. 1987. An evolutionary basis for pollination ecology. EJ Brill/Leiden University Press, Leiden, ISBN   90-04-08457-6
  6. Kevan P.G., 2001 Pollination: Plinth, pedestal, and pillar for terrestrial productivity. The why, how, and where of pollination protection, conservation, and promotion. In: C.S. Stubbs and F.A. Drummond [eds] Bees and Crop Pollination–Crisis, Crossroads, Conservation. Thomas Say Publication of the Entomological Society of America, Lanham, Maryland, U.S.A. pp. 7-68.
  7. B. Holldobler and E.O. Wilson, The Ants, Cambridge, Massachusetts: The Belknap Press of Harvard University Press, 1990.
  8. B. Holldobler and E.O. Wilson, Journey to the Ants, Cambridge, Massachusetts: The Belknap Press of Harvard University Press, 1994.
  9. Preston-Mafham, Rod; Ken Preston-Mafham (1993). The encyclopedia of land invertebrate behaviour. MIT Press.
  10. Bonduriansky R., 2006 Convergent evolution of sexual shape dimorphism in Diptera.J Morphol. 2006 May;267(5):602-11.
  11. 1 2 Sperling AL, Glover DM. Parthenogenesis in dipterans: a genetic perspective. Proc Biol Sci. 2023 Mar 29;290(1995):20230261. doi: 10.1098/rspb.2023.0261. Epub 2023 Mar 22. PMID: 36946111; PMCID: PMC10031431
  12. 1 2 Mirzaghaderi G, Hörandl E. The evolution of meiotic sex and its alternatives. Proc Biol Sci. 2016 Sep 14;283(1838):20161221. doi: 10.1098/rspb.2016.1221. PMID: 27605505; PMCID: PMC5031655
  13. Viviani V.R., Hastings J.W., Wilson T (2002) Two bioluminescent diptera: the North American Orfelia fultoni and the Australian Arachnocampa flava. Similar niche, different bioluminescence systems. Photochemistry & Photobiology 75, 22-27.

Related Research Articles

<span class="mw-page-title-main">Fly</span> Order of insects

Flies are insects of the order Diptera, the name being derived from the Greek δι- di- "two", and πτερόν pteron "wing". Insects of this order use only a single pair of wings to fly, the hindwings having evolved into advanced mechanosensory organs known as halteres, which act as high-speed sensors of rotational movement and allow dipterans to perform advanced aerobatics. Diptera is a large order containing an estimated 1,000,000 species including horse-flies, crane flies, hoverflies, mosquitoes and others, although only about 125,000 species have been described.

<span class="mw-page-title-main">Hoverfly</span> Family of insects

Hoverflies, also called flower flies or syrphids, make up the insect family Syrphidae. As their common name suggests, they are often seen hovering or nectaring at flowers; the adults of many species feed mainly on nectar and pollen, while the larvae (maggots) eat a wide range of foods. In some species, the larvae are saprotrophs, eating decaying plant and animal matter in the soil or in ponds and streams. In other species, the larvae are insectivores and prey on aphids, thrips, and other plant-sucking insects.

<span class="mw-page-title-main">Crane fly</span> Superfamily of flies

A crane fly is any member of the dipteran superfamily Tipuloidea, which contains the living families Cylindrotomidae, Limoniidae, Pediciidae and Tipulidae, as well as several extinct families. "Winter crane flies", members of the family Trichoceridae, are sufficiently different from the typical crane flies of Tipuloidea to be excluded from the superfamily Tipuloidea, and are placed as their sister group within Tipulomorpha.

<span class="mw-page-title-main">Bombyliidae</span> Family of flies

The Bombyliidae are a family of flies, commonly known as bee flies. Adults generally feed on nectar and pollen, some being important pollinators. Larvae are mostly parasitoids of other insects.

<span class="mw-page-title-main">Lovebug</span> Species of fly

The lovebug is a species of march fly found in parts of Central America and the southeastern United States, especially along the Gulf Coast. It is also known as the honeymoon fly or double-headed bug. During and after mating, matured pairs remain together, even in flight, for up to several days.

<span class="mw-page-title-main">Phoridae</span> Family of flies

The Phoridae are a family of small, hump-backed flies resembling fruit flies. Phorid flies can often be identified by their escape habit of running rapidly across a surface rather than taking to the wing. This behaviour is a source of one of their alternate names, scuttle fly. Another vernacular name, coffin fly, refers to Conicera tibialis. About 4,000 species are known in 230 genera. The most well-known species is cosmopolitan Megaselia scalaris. At 0.4 mm in length, the world's smallest fly is the phorid Euryplatea nanaknihali.

<i>Leptoconops torrens</i> Species of fly

Leptoconops torrens is a species of small biting flies in the no-see-um family Ceratopogonidae. They were first mentioned in writing by Charles Henry Tyler Townsend in 1893. The name Leptoconops carteri is a junior synonym of L. torrens. They are prevalent in the southwestern and southeastern areas of the United States. In early stages of life, L. torrens flies dwell in soil, then emerge to feed and breed as fully developed adults.

<span class="mw-page-title-main">Nematocera</span> Suborder of flies

The Nematocera are a suborder of elongated flies with thin, segmented antennae and mostly aquatic larvae. This group is paraphyletic and contains all flies but species from suborder Brachycera, which includes more commonly known species such as the housefly or the common fruit fly. The equivalent clade to Nematocera is the whole Diptera, with Brachycera as a subclade. Families in Nematocera include mosquitoes, crane flies, gnats, black flies, and multiple families commonly known as midges. The Nematocera typically have fairly long, fine, finely-jointed antennae. In many species, such as most mosquitoes, the female antennae are more or less threadlike, but the males have spectacularly plumose antennae.

<span class="mw-page-title-main">Asilidae</span> Family of flies

The Asilidae are the robber fly family, also called assassin flies. They are powerfully built, bristly flies with a short, stout proboscis enclosing the sharp, sucking hypopharynx. The name "robber flies" reflects their expert predatory habits; they feed mainly or exclusively on other insects and, as a rule, they wait in ambush and catch their prey in flight.

<span class="mw-page-title-main">Trichoceridae</span> Family of flies

Trichoceridae, or winter crane flies, of the order Diptera are long, thin, delicate insects superficially similar in appearance to the Tipulidae, Tanyderidae, and Ptychopteridae. The presence of ocelli distinguishes the Trichoceridae from these other families. There are approximately 160 known species. The adults can be found flying in the fall and the spring and some are active even in the winter, hence their common name. They form dancing, loose swarms of mostly males. Adults can also be found resting inside caves and hollow logs. Larvae occur in moist habitats where they feed on decaying organic matter. They are of no economic importance.

<span class="mw-page-title-main">Dolichopodidae</span> Family of flies

Dolichopodidae, the long-legged flies, are a large, cosmopolitan family of true flies with more than 8,000 described species in about 250 genera. The genus Dolichopus is the most speciose, with some 600 species.

<span class="mw-page-title-main">Empididae</span> Family of flies

Empididae is a family of flies with over 3,000 described species occurring worldwide in all the biogeographic realms but the majority are found in the Holarctic. They are mainly predatory flies like most of their relatives in the Empidoidea, and exhibit a wide range of forms but are generally small to medium-sized, non-metallic and rather bristly.

<span class="mw-page-title-main">Bibionidae</span> Family of flies

Bibionidae is a family of flies (Diptera) containing approximately 650–700 species worldwide. Adults are nectar feeders and emerge in numbers in spring. Because of the likelihood of adults flies being found in copula, they have earned colloquial names such as "love bugs" or "honeymoon flies".

<span class="mw-page-title-main">Milichiidae</span> Family of flies

Milichiidae are a family of flies. Most species are very small and dark. Details of their biology have not yet been properly studied, but they are best known as kleptoparasites of predatory invertebrates, and accordingly are commonly known as freeloader flies or jackal flies. However, because of the conditions under which many species breed out, they also are known as filth flies.

<span class="mw-page-title-main">Scenopinidae</span> Family of flies

The Scenopinidae or window flies are a small family of flies (Diptera), distributed worldwide. In buildings, they are often taken at windows, hence the common name window flies.

<i>Syritta pipiens</i> Species of fly

Syritta pipiens, sometimes called the thick-legged hoverfly, is one of the most common species in the insect family Syrphidae. This fly originates from Europe and is currently distributed across Eurasia and North America. They are fast and nimble fliers, and their larvae are found in wet, rotting organic matter such as garden compost, manure, and silage. The species is also commonly found in human-created environments such as most farmland, gardens, and urban parks, wherever there are flowers. This species is an important part of its native ecosystem as adult Syritta pipiens flies are critical pollinators for a variety of flowering plants and the species supports parasitism by various parasitic wasp species. Thus, they play an important role in environmental functionality, and can serve as bio-indicators, in which their abundance can reflect the health of the environment. Syritta pipiens looks like many predatory hoverfly species, yet is not predatory.

<i>Toxomerus</i> Genus of flies

Toxomerus is a very large genus of hoverflies. They are found in many parts of North and South America. Most larvae are predators on soft bodied insects, though a few species have been shown to feed on pollen. Adults feed on the pollen of a wide range of flowers.

<i>Empis ciliata</i> Species of fly

Empis ciliata, the black dance fly, is a species of dance fly, in the fly family Empididae. It is included in the subgenus Euempis.

<i>Rhamphomyia longicauda</i> Species of insect

Rhamphomyia longicauda, the long-tailed dance fly, is a species of fly commonly found in eastern North America that belongs to the family Empididae and part of the superfamily of dance flies Empidoidea. It is included in the subgenus Rhamphomyia. This species of fly is most known for sex role reversal during courtship, as females put on exaggerated displays and congregate in leks to attract males. Females cannot hunt for food, so they receive protein from nuptial gifts brought to them by males. Female dependence on males for nutrition is the principal cause for sex role reversal in this species of fly.

Mallophora ruficauda is a species of parasitic robber fly in the family Asilidae, endemic to South and Central America. Like other robber flies, M. ruficauda is known for its aggressive behavior and predation upon other insects, especially bees. M. ruficauda mimics a bumblebee to fool predators into thinking it has a painful sting and is not worth eating.

References