Branaplam

Last updated
Branaplam
Branaplam skeletal.svg
Clinical data
Other namesLMI070; NVS-SM1
Identifiers
  • (6E)-3-(1H-Pyrazol-4-yl)-6-[3-(2,2,6,6-tetramethylpiperidin-4-yl)oxy-1H-pyridazin-6-ylidene]cyclohexa-2,4-dien-1-one
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
CompTox Dashboard (EPA)
Chemical and physical data
Formula C22H27N5O2
Molar mass 393.491 g·mol−1
3D model (JSmol)
  • CC1(CC(CC(N1)(C)C)Oc2ccc(nn2)c3ccc(cc3O)c4c[nH]nc4)C
  • InChI=1S/C22H27N5O2/c1-21(2)10-16(11-22(3,4)27-21)29-20-8-7-18(25-26-20)17-6-5-14(9-19(17)28)15-12-23-24-13-15/h5-9,12-13,16,25,27H,10-11H2,1-4H3,(H,23,24)/b18-17+
  • Key:YIFFDXMJVNKGBL-ISLYRVAYSA-N

  • InChI=1S/C22H27N5O2/c1-21(2)10-16(11-22(3,4)27-21)29-20-8-7-18(25-26-20)17-6-5-14(9-19(17)28)15-12-23-24-13-15/h5-9,12-13,16,27-28H,10-11H2,1-4H3,(H,23,24)
  • Key:STWTUEAWRAIWJG-UHFFFAOYSA-N

Branaplam (development codes LMI070 and NVS-SM1) is a pyridazine derivative that is being studied as an experimental drug. It was originally developed by Novartis to treat spinal muscular atrophy (SMA); since 2020 it was being developed to treat Huntington's disease but the trial ended in 2023 due to toxicity concerns. [1]

As a treatment for SMA, branaplam increases the amount of functional survival of motor neuron protein produced by the SMN2 gene through modifying its splicing pattern. [2] [3] It was studied since 2014 in a clinical trial in children with SMA type 1 [4] [5] [6] until the study was discontinued in 2021.

In October 2020, Novartis announced that branaplam reduces the amount of huntingtin protein, which is one of the major therapeutic approaches in Huntington's disease. In 2021, U.S. Food and Drug Administration (FDA) granted an orphan drug status to branaplam for treatment of Huntington’s disease, and Novartis announced that they would start clinical trials in 2021. [7] In August 2022, Novartis temporarily halted the dosing with branaplam in its clinical studies, and in December 2022 the company discontinued the study due to negative safety signals. [8]

Keto-enol tautomerism of branaplam Branaplam tautomers.svg
Keto-enol tautomerism of branaplam

Related Research Articles

<span class="mw-page-title-main">Salbutamol</span> Short-acting bronchodilator used for acute asthma

Salbutamol, also known as albuterol and sold under the brand name Ventolin among others, is a medication that opens up the medium and large airways in the lungs. It is a short-acting β2 adrenergic receptor agonist that causes relaxation of airway smooth muscle. It is used to treat asthma, including asthma attacks and exercise-induced bronchoconstriction, as well as chronic obstructive pulmonary disease (COPD). It may also be used to treat high blood potassium levels. Salbutamol is usually used with an inhaler or nebulizer, but it is also available in a pill, liquid, and intravenous solution. Onset of action of the inhaled version is typically within 15 minutes and lasts for two to six hours.

Antisense therapy is a form of treatment that uses antisense oligonucleotides (ASOs) to target messenger RNA (mRNA). ASOs are capable of altering mRNA expression through a variety of mechanisms, including ribonuclease H mediated decay of the pre-mRNA, direct steric blockage, and exon content modulation through splicing site binding on pre-mRNA. Several ASOs have been approved in the United States, the European Union, and elsewhere.

<span class="mw-page-title-main">Arimoclomol</span> Experimental drug

Arimoclomol is an experimental drug developed by CytRx Corporation, a biopharmaceutical company based in Los Angeles, California. In 2011 the worldwide rights to arimoclomol were bought by Danish biotech company Orphazyme ApS. The European Medicines Agency (EMA) and U.S. Food & Drug Administration (FDA) granted orphan drug designation to arimoclomol as a potential treatment for Niemann-Pick type C in 2014 and 2015 respectively.

<span class="mw-page-title-main">Spinal muscular atrophy</span> Rare congenital neuromuscular disorder

Spinal muscular atrophy (SMA) is a rare neuromuscular disorder that results in the loss of motor neurons and progressive muscle wasting. It is usually diagnosed in infancy or early childhood and if left untreated it is the most common genetic cause of infant death. It may also appear later in life and then have a milder course of the disease. The common feature is progressive weakness of voluntary muscles, with arm, leg and respiratory muscles being affected first. Associated problems may include poor head control, difficulties swallowing, scoliosis, and joint contractures.

<span class="mw-page-title-main">PTC Therapeutics</span> Pharmaceutical company

PTC Therapeutics is a US pharmaceutical company focused on the development of orally administered small molecule drugs and gene therapy which regulate gene expression by targeting post-transcriptional control (PTC) mechanisms in orphan diseases.

<i>SMN1</i> Protein-coding gene in the species Homo sapiens

Survival of motor neuron 1 (SMN1), also known as component of gems 1 or GEMIN1, is a gene that encodes the SMN protein in humans.

<span class="mw-page-title-main">NAIP (gene)</span> Protein and coding gene in humans

Baculoviral IAP repeat-containing protein 1 is a protein that in humans is encoded by the NAIP gene.

<i>SMN2</i> Protein-coding gene in the species Homo sapiens

Survival of motor neuron 2 (SMN2) is a gene that encodes the SMN protein in humans.

<span class="mw-page-title-main">Olesoxime</span> Chemical compound

Olesoxime (TRO19622) is an experimental drug formerly under development by the now-defunct French company Trophos as a treatment for a range of neuromuscular disorders. It has a cholesterol-like structure and belongs to the cholesterol-oxime family of mitochondrial pore modulators.

Drisapersen is an experimental drug that was under development by BioMarin, after acquisition of Prosensa, for the treatment of Duchenne muscular dystrophy. The drug is a 2'-O-methyl phosphorothioate oligonucleotide that alters the splicing of the dystrophin RNA transcript, eliminating exon 51 from the mature dystrophin mRNA.

<span class="mw-page-title-main">Epigenetics of neurodegenerative diseases</span> Field of study

Neurodegenerative diseases are a heterogeneous group of complex disorders linked by the degeneration of neurons in either the peripheral nervous system or the central nervous system. Their underlying causes are extremely variable and complicated by various genetic and/or environmental factors. These diseases cause progressive deterioration of the neuron resulting in decreased signal transduction and in some cases even neuronal death. Peripheral nervous system diseases may be further categorized by the type of nerve cell affected by the disorder. Effective treatment of these diseases is often prevented by lack of understanding of the underlying molecular and genetic pathology. Epigenetic therapy is being investigated as a method of correcting the expression levels of misregulated genes in neurodegenerative diseases.

<span class="mw-page-title-main">Ionis Pharmaceuticals</span> Biotechnology company

Ionis Pharmaceuticals, Inc. is a biotechnology company based in Carlsbad, California, that specializes in discovering and developing RNA-targeted therapeutics. The company has three commercially approved medicines: Spinraza (Nusinersen), Tegsedi (Inotersen), and Waylivra (Volanesorsen) and has four drugs in pivotal studies: tominersen for Huntington's disease, tofersen for SOD1-ALS, AKCEA-APO(a)-LRx for cardiovascular disease, and AKCEA-TTR-LRx for all forms of TTR amyloidosis.

<span class="mw-page-title-main">Nusinersen</span> Medication used for spinal muscular atrophy

Nusinersen, marketed as Spinraza, is a medication used in treating spinal muscular atrophy (SMA), a rare neuromuscular disorder. In December 2016, it became the first approved drug used in treating this disorder.

<span class="mw-page-title-main">Ezutromid</span> Chemical compound

Ezutromid is an orally administered small molecule utrophin modulator involved in a Phase 2 clinical trial produced by Summit Therapeutics for the treatment of Duchenne muscular dystrophy (DMD). DMD is a fatal x-linked recessive disease affecting approximately 1 in 5000 males and is a designated orphan disease by the FDA and European Medicines Agency. Approximately 1/3 of the children obtain DMD as a result of spontaneous mutation in the dystrophin gene and have no family history of the disease. Dystrophin is a vital component of mature muscle function, and therefore DMD patients have multifarious forms of defunct or deficient dystrophin proteins that all manifest symptomatically as muscle necrosis and eventually organ failure. Ezutromid is theorized to maintain utrophin, a protein functionally and structurally similar to dystrophin that precedes and is replaced by dystrophin during development. Utrophin and dystrophin are reciprocally expressed, and are found in different locations in a mature muscle cell. However, in dystrophin-deficient patients, utrophin was found to be upregulated and is theorized to replace dystrophin in order to maintain muscle fibers. Ezutromid is projected to have the potential to treat all patients suffering with DMD as it maintains the production of utrophin to counteract the lack of dystrophin to retard muscle degeneration. Both the FDA and European Medicines Agency has given ezutromid an orphan drug designation. The FDA Office of Orphan Products and Development offers an Orphan Drug Designation program (ODD) that allows drugs aimed to treat diseases that affect less than 200,000 people in the U.S. monetary incentives such as a period of market exclusivity, tax incentives, and expedited approval processes.

<span class="mw-page-title-main">Risdiplam</span> Chemical compound

Risdiplam, sold under the brand name Evrysdi, is a medication used to treat spinal muscular atrophy (SMA) and the first oral medication approved to treat this disease.

Satralizumab, sold under the brand name Enspryng, is a humanized monoclonal antibody medication that is used for the treatment of neuromyelitis optica spectrum disorder (NMOSD), a rare autoimmune disease. The drug is being developed by Chugai Pharmaceutical, a subsidiary of Roche.

Onasemnogene abeparvovec, sold under the brand name Zolgensma, is a gene therapy used to treat spinal muscular atrophy (SMA), a disease causing muscle function loss in children. It involves a one-time infusion of the medication into a vein. It works by providing a new copy of the SMN gene that produces the SMN protein.

Novartis Gene Therapies, until 2020 known as AveXis, is a biotechnology company that develops treatments for rare neurological genetic disorders. It was founded in Dallas, Texas, United States in 2012 by John Carbona after reorganizing a company called BioLife Cell Bank founded by David Genecov and John Harkey. Work done at Nationwide Children's Hospital in the laboratory of Brian Kaspar was licensed to AveXis in October 2013. Unusual for the time, Nationwide Children's Hospital, in addition to upfront and milestone payments, also took an equity position in AveXis. Kaspar became paid consultant pari passu with the license agreement in 2013. The company was built specifically around a discovery of a novel method of treating spinal muscular atrophy using gene therapy. AveXis was acquired by Novartis in 2018 for USD 8.7 billion.

<span class="mw-page-title-main">Alberto Kornblihtt</span> Argentine molecular biologist

Alberto Kornblihtt is an Argentine molecular biologist who specializes in alternative ribonucleic acid splicing. During his postdoctoral training with Francisco Baralle in Oxford, Kornblihtt documented one of the first cases of alternative splicing, explaining how a single transcribed gene can generate multiple protein variants. Kornblihtt was elected as a foreign associate of the National Academy of Sciences of the United States in 2011, received the Diamond Award for the most relevant scientist of Argentina of the decade, alongside physicist Juan Martin Maldacena, in 2013, and was incorporated to the Académie des Sciences of France in 2022.

Stephen Donald Wilton, also known as Steve Wilton, is an Australian molecular biologist and academic, serving as the Foundation Professor of Molecular Therapy at Murdoch University and adjunct professor at the University of Western Australia (UWA). He also fulfills dual roles as a Director at the Perron Institute for Neurological and Translational Science and deputy director at Murdoch's Centre for Molecular Medicine and Innovative Therapeutics (CMMIT).

References

  1. https://www.fiercebiotech.com/biotech/novartis-cans-branaplam-after-seeing-huntingtons-safety-signal-delays-orphan-drug-over-slow
  2. Palacino J, Swalley SE, Song C, Cheung AK, Shu L, Zhang X, et al. (July 2015). "SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice". Nature Chemical Biology. 11 (7): 511–7. doi:10.1038/nchembio.1837. PMID   26030728.
  3. "LMI070". SMA News Today. Retrieved 2017-03-10.
  4. "An Open Label Study of LMI070 in Type 1 Spinal Muscular Atrophy (SMA)". ClinicalTrials.gov . Retrieved 2017-03-10.
  5. "Novartis Releases Update on LMI070 (Branaplam) Clinical Trial". CureSMA. 2017-09-20. Archived from the original on 2017-11-25. Retrieved 2017-10-07.
  6. "| Novartis announced that enrollment for the ongoing clinical trial of branaplan is now closed". 20 May 2019. Retrieved 2019-07-12.
  7. "Novartis receives US Food and Drug Administration (FDA) Orphan Drug Designation for branaplam (LMI070) in Huntington's disease (HD)". novartis.com . Retrieved 2020-10-24.
  8. https://hdsa.org/wp-content/uploads/2022/12/Novartis-VIBRANT-HD-Community-Letter-FINAL-PDF.pdf