Causal sets

Last updated

The causal sets program is an approach to quantum gravity. Its founding principles are that spacetime is fundamentally discrete (a collection of discrete spacetime points, called the elements of the causal set) and that spacetime events are related by a partial order. This partial order has the physical meaning of the causality relations between spacetime events.

Contents

History

For some decades after the formulation of General Relativity, the attitude towards Lorentzian geometry was mostly dedicated to understanding its physical implications and not concerned with theoretical issues. [1] However, early attempts to use causality as a starting point have been provided by Weyl and Lorentz. [2] Alfred Robb in two books in 1914 and 1936 suggested an axiomatic framework where the causal precedence played a critical role. [1] The first explicit proposal of quantising the causal structure of spacetime is attributed by S. Surya [1] to Kronheimer and Penrose, [3] who invented Causal spaces in order to admit structures which can be very different from a manifold. Causal spaces are defined axiomatically, by considering not only causal precedence, but also chronological precedence.

The program of causal sets is based on a theorem [4] by David Malament, extending former results by E.C. Zeeman [5] and Hawking, King, McCarthy. [6] [1] Malament Theorem states that if there is a bijective map between two past and future distinguishing space times that preserves their causal structure then the map is a conformal isomorphism. The conformal factor that is left undetermined is related to the volume of regions in the spacetime. This volume factor can be recovered by specifying a volume element for each space time point. The volume of a space time region could then be found by counting the number of points in that region.

Causal sets was initiated by Rafael Sorkin who continues to be the main proponent of the program. He has coined the slogan "Order + Number = Geometry" to characterize the above argument. The program provides a theory in which space time is fundamentally discrete while retaining local Lorentz invariance.

Definition

A causal set (or causet) is a set with a partial order relation that is

We'll write if and .

The set represents the set of spacetime events and the order relation represents the causal relationship between events (see causal structure for the analogous idea in a Lorentzian manifold).

Although this definition uses the reflexive convention we could have chosen the irreflexive convention in which the order relation is irreflexive and asymmetric.

The causal relation of a Lorentzian manifold (without closed causal curves) satisfies the first three conditions. It is the local finiteness condition that introduces spacetime discreteness.

Comparison to the continuum

Given a causal set we may ask whether it can be embedded into a Lorentzian manifold. An embedding would be a map taking elements of the causal set into points in the manifold such that the order relation of the causal set matches the causal ordering of the manifold. A further criterion is needed however before the embedding is suitable. If, on average, the number of causal set elements mapped into a region of the manifold is proportional to the volume of the region then the embedding is said to be faithful. In this case we can consider the causal set to be 'manifold-like'.

A central conjecture of the causal set program, called the Hauptvermutung ('fundamental conjecture'), is that the same causal set cannot be faithfully embedded into two spacetimes that are not similar on large scales.

It is difficult to define this conjecture precisely because it is difficult to decide when two spacetimes are 'similar on large scales'. Modelling spacetime as a causal set would require us to restrict attention to those causal sets that are 'manifold-like'. Given a causal set this is a difficult property to determine.

Sprinkling

A plot of 1000 sprinkled points in 1+1 dimensions CausalSet(1000Points).png
A plot of 1000 sprinkled points in 1+1 dimensions

The difficulty of determining whether a causal set can be embedded into a manifold can be approached from the other direction. We can create a causal set by sprinkling points into a Lorentzian manifold. By sprinkling points in proportion to the volume of the spacetime regions and using the causal order relations in the manifold to induce order relations between the sprinkled points, we can produce a causal set that (by construction) can be faithfully embedded into the manifold.

To maintain Lorentz invariance this sprinkling of points must be done randomly using a Poisson process. Thus the probability of sprinkling points into a region of volume is

where is the density of the sprinkling.

Sprinkling points as a regular lattice would not keep the number of points proportional to the region volume.

Geometry

Some geometrical constructions in manifolds carry over to causal sets. When defining these we must remember to rely only on the causal set itself, not on any background spacetime into which it might be embedded. For an overview of these constructions, see. [7]

Geodesics

A plot of geodesics between two points in a 180-point causal set made by sprinkling into 1+1 dimensions CausalSet180Geodesic.png
A plot of geodesics between two points in a 180-point causal set made by sprinkling into 1+1 dimensions

A link in a causal set is a pair of elements such that but with no such that .

A chain is a sequence of elements such that for . The length of a chain is . If every in the chain form a link, then the chain is called a path.

We can use this to define the notion of a geodesic between two causal set elements, provided they are order comparable, that is, causally connected (physically, this means they are time-like). A geodesic between two elements is a chain consisting only of links such that

  1. and
  2. The length of the chain, , is maximal over all chains from to .

In general there can be more than one geodesic between two comparable elements.

Myrheim [8] first suggested that the length of such a geodesic should be directly proportional to the proper time along a timelike geodesic joining the two spacetime points. Tests of this conjecture have been made using causal sets generated from sprinklings into flat spacetimes. The proportionality has been shown to hold and is conjectured to hold for sprinklings in curved spacetimes too.

Dimension estimators

Much work has been done in estimating the manifold dimension of a causal set. This involves algorithms using the causal set aiming to give the dimension of the manifold into which it can be faithfully embedded. The algorithms developed so far are based on finding the dimension of a Minkowski spacetime into which the causal set can be faithfully embedded.

This approach relies on estimating the number of -length chains present in a sprinkling into -dimensional Minkowski spacetime. Counting the number of -length chains in the causal set then allows an estimate for to be made.

This approach relies on the relationship between the proper time between two points in Minkowski spacetime and the volume of the spacetime interval between them. By computing the maximal chain length (to estimate the proper time) between two points and and counting the number of elements such that (to estimate the volume of the spacetime interval) the dimension of the spacetime can be calculated.

These estimators should give the correct dimension for causal sets generated by high-density sprinklings into -dimensional Minkowski spacetime. Tests in conformally-flat spacetimes [9] have shown these two methods to be accurate.

Dynamics

An ongoing task is to develop the correct dynamics for causal sets. These would provide a set of rules that determine which causal sets correspond to physically realistic spacetimes. The most popular approach to developing causal set dynamics is based on the sum-over-histories version of quantum mechanics. This approach would perform a "sum-over-causal sets" by growing a causal set one element at a time. Elements would be added according to quantum mechanical rules and interference would ensure a large manifold-like spacetime would dominate the contributions. The best model for dynamics at the moment is a classical model in which elements are added according to probabilities. This model, due to David Rideout and Rafael Sorkin, is known as classical sequential growth (CSG) dynamics. [10] The classical sequential growth model is a way to generate causal sets by adding new elements one after another. Rules for how new elements are added are specified and, depending on the parameters in the model, different causal sets result.

In analogy to the path integral formulation of quantum mechanics, one approach to developing a quantum dynamics for causal sets has been to apply an action principle in the sum-over-causal sets approach. Sorkin has proposed a discrete analogue for the d'Alembertian, which can in turn be used to define the Ricci curvature scalar and thereby the Benincasa–Dowker action on a causal set. [11] [12] Monte-Carlo simulations have provided evidence for a continuum phase in 2D using the Benincasa–Dowker action. [13]

See also

Related Research Articles

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalises special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

<span class="mw-page-title-main">Quantum gravity</span> Description of gravity using discrete values

Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, such as neutron stars as well as in the early stages of the universe moments after the Big Bang.

A wormhole is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations.

<span class="mw-page-title-main">Loop quantum gravity</span> Theory of quantum gravity, merging quantum mechanics and general relativity

Loop quantum gravity (LQG) is a theory of quantum gravity that incorporates matter of the Standard Model into the framework established for the intrinsic quantum gravity case. It is an attempt to develop a quantum theory of gravity based directly on Albert Einstein's geometric formulation rather than the treatment of gravity as a mysterious mechanism (force). As a theory, LQG postulates that the structure of space and time is composed of finite loops woven into an extremely fine fabric or network. These networks of loops are called spin networks. The evolution of a spin network, or spin foam, has a scale above the order of a Planck length, approximately 10−35 meters, and smaller scales are meaningless. Consequently, not just matter, but space itself, prefers an atomic structure.

In mathematical physics, a closed timelike curve (CTC) is a world line in a Lorentzian manifold, of a material particle in spacetime, that is "closed", returning to its starting point. This possibility was first discovered by Willem Jacob van Stockum in 1937 and later confirmed by Kurt Gödel in 1949, who discovered a solution to the equations of general relativity (GR) allowing CTCs known as the Gödel metric; and since then other GR solutions containing CTCs have been found, such as the Tipler cylinder and traversable wormholes. If CTCs exist, their existence would seem to imply at least the theoretical possibility of time travel backwards in time, raising the spectre of the grandfather paradox, although the Novikov self-consistency principle seems to show that such paradoxes could be avoided. Some physicists speculate that the CTCs which appear in certain GR solutions might be ruled out by a future theory of quantum gravity which would replace GR, an idea which Stephen Hawking labeled the chronology protection conjecture. Others note that if every closed timelike curve in a given space-time passes through an event horizon, a property which can be called chronological censorship, then that space-time with event horizons excised would still be causally well behaved and an observer might not be able to detect the causal violation.

<span class="mw-page-title-main">Spin foam</span> Topological structure used in a description of quantum gravity

In physics, the topological structure of spinfoam or spin foam consists of two-dimensional faces representing a configuration required by functional integration to obtain a Feynman's path integral description of quantum gravity. These structures are employed in loop quantum gravity as a version of quantum foam.

The Immirzi parameter is a numerical coefficient appearing in loop quantum gravity (LQG), a nonperturbative theory of quantum gravity. The Immirzi parameter measures the size of the quantum of area in Planck units. As a result, its value is currently fixed by matching the semiclassical black hole entropy, as calculated by Stephen Hawking, and the counting of microstates in loop quantum gravity.

In general relativity, Regge calculus is a formalism for producing simplicial approximations of spacetimes that are solutions to the Einstein field equation. The calculus was introduced by the Italian theoretician Tullio Regge in 1961.

<span class="mw-page-title-main">Quantum field theory in curved spacetime</span> Extension of quantum field theory to curved spacetime

In theoretical physics, quantum field theory in curved spacetime (QFTCS) is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory uses a semi-classical approach; it treats spacetime as a fixed, classical background, while giving a quantum-mechanical description of the matter and energy propagating through that spacetime. A general prediction of this theory is that particles can be created by time-dependent gravitational fields (multigraviton pair production), or by time-independent gravitational fields that contain horizons. The most famous example of the latter is the phenomenon of Hawking radiation emitted by black holes.

<span class="mw-page-title-main">Wheeler–DeWitt equation</span> Field equation, part of a theory that attempts to combine quantum mechanics and general relativity

The Wheeler–DeWitt equation for theoretical physics and applied mathematics, is a field equation attributed to John Archibald Wheeler and Bryce DeWitt. The equation attempts to mathematically combine the ideas of quantum mechanics and general relativity, a step towards a theory of quantum gravity.

Induced gravity is an idea in quantum gravity that spacetime curvature and its dynamics emerge as a mean field approximation of underlying microscopic degrees of freedom, similar to the fluid mechanics approximation of Bose–Einstein condensates. The concept was originally proposed by Andrei Sakharov in 1967.

<span class="mw-page-title-main">Causal dynamical triangulation</span> Hypothetical approach to quantum gravity with emergent spacetime

Causal dynamical triangulation, theorized by Renate Loll, Jan Ambjørn and Jerzy Jurkiewicz, is an approach to quantum gravity that, like loop quantum gravity, is background independent.

<span class="mw-page-title-main">Fay Dowker</span> British physicist

Helen Fay Dowker is a British physicist who is a current professor of theoretical physics at Imperial College London.

Loop quantum cosmology (LQC) is a finite, symmetry-reduced model of loop quantum gravity (LQG) that predicts a "quantum bridge" between contracting and expanding cosmological branches.

In mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold.

In the study of Lorentzian manifold spacetimes there exists a hierarchy of causality conditions which are important in proving mathematical theorems about the global structure of such manifolds. These conditions were collected during the late 1970s.

In physics, a pregeometry is a hypothetical structure from which the geometry of the universe develops. Some cosmological models feature a pregeometric universe before the Big Bang. The term was championed by John Archibald Wheeler in the 1960s and 1970s as a possible route to a theory of quantum gravity. Since quantum mechanics allowed a metric to fluctuate, it was argued that the merging of gravity with quantum mechanics required a set of more fundamental rules regarding connectivity that were independent of topology and dimensionality. Where geometry could describe the properties of a known surface, the physics of a hypothetical region with predefined properties, "pregeometry" might allow one to work with deeper underlying rules of physics that were not so strongly dependent on simplified classical assumptions about the properties of space.

In mathematical physics, de Sitter invariant special relativity is the speculative idea that the fundamental symmetry group of spacetime is the indefinite orthogonal group SO(4,1), that of de Sitter space. In the standard theory of general relativity, de Sitter space is a highly symmetrical special vacuum solution, which requires a cosmological constant or the stress–energy of a constant scalar field to sustain.

<span class="mw-page-title-main">Group field theory</span> Quantum field theory with a Lie group base manifold

Group field theory (GFT) is a quantum field theory in which the base manifold is taken to be a Lie group. It is closely related to background independent quantum gravity approaches such as loop quantum gravity, the spin foam formalism and causal dynamical triangulation. It can be shown that its perturbative expansion can be interpreted as spin foams and simplicial pseudo-manifolds (depending on the representation of the fields). Thus, its partition function defines a non-perturbative sum over all simplicial topologies and geometries, giving a path integral formulation of quantum spacetime.

<span class="mw-page-title-main">Causal fermion systems</span> Candidate unified theory of physics

The theory of causal fermion systems is an approach to describe fundamental physics. It provides a unification of the weak, the strong and the electromagnetic forces with gravity at the level of classical field theory. Moreover, it gives quantum mechanics as a limiting case and has revealed close connections to quantum field theory. Therefore, it is a candidate for a unified physical theory. Instead of introducing physical objects on a preexisting spacetime manifold, the general concept is to derive spacetime as well as all the objects therein as secondary objects from the structures of an underlying causal fermion system. This concept also makes it possible to generalize notions of differential geometry to the non-smooth setting. In particular, one can describe situations when spacetime no longer has a manifold structure on the microscopic scale. As a result, the theory of causal fermion systems is a proposal for quantum geometry and an approach to quantum gravity.

References

  1. 1 2 3 4 Surya, S. The causal set approach to quantum gravity. Living Rev Relativ 22, 5 (2019), p. 7-9. https://doi.org/10.1007/s41114-019-0023-1
  2. Bell JL, Korté H (2016) Hermann Weyl. In: Zalta EN (ed) The Stanford encyclopedia of philosophy, winter 2016 edn. Metaphysics Research Lab, Stanford University
  3. Kronheimer E, Penrose R (1967) On the structure of causal spaces. Proc Camb Phil Soc 63:481
  4. Malament, David B. (July 1977). "The class of continuous timelike curves determines the topology of spacetime" (PDF). Journal of Mathematical Physics. 18 (7): 1399–1404. Bibcode:1977JMP....18.1399M. doi:10.1063/1.523436.
  5. E.C. Zeeman, Causality Implies the Lorentz Group , J. Math. Phys. 5: 490-493.
  6. Hawking S, King A, McCarthy P (1976) A new topology for curved space-time which incorporates the causal, differential, and conformal structures. J Math Phys 17:174–181.
  7. Brightwell, Graham; Gregory, Ruth (21 January 1991). "Structure of random discrete spacetime". Physical Review Letters. 66 (3): 260–263. Bibcode:1991PhRvL..66..260B. doi:10.1103/PhysRevLett.66.260. hdl: 2060/19900019113 . PMID   10043761. S2CID   32109929.
  8. J. Myrheim, CERN preprint TH-2538 (1978)
  9. Reid, David D. (30 January 2003). "Manifold dimension of a causal set: Tests in conformally flat spacetimes". Physical Review D. 67 (2): 024034. arXiv: gr-qc/0207103 . Bibcode:2003PhRvD..67b4034R. doi:10.1103/PhysRevD.67.024034. S2CID   12748458.
  10. Rideout, D. P.; Sorkin, R. D. (2000). "Classical sequential growth dynamics for causal sets". Physical Review D. 61 (2): 024002. arXiv: gr-qc/9904062 . Bibcode:1999PhRvD..61b4002R. doi:10.1103/PhysRevD.61.024002. S2CID   14652530.
  11. Sorkin, D. P. (20 March 2007). "Does Locality Fail at Intermediate Length-Scales". arXiv: gr-qc/0703099 .
  12. Benincasa, D. M. T.; Dowker, F. (May 2010). "The Scalar Curvature of a Causal Set". Phys. Rev. Lett. 104 (18): 181301. arXiv: 1001.2725 . Bibcode:2010PhRvL.104r1301B. doi:10.1103/PhysRevLett.104.181301. PMID   20482164. S2CID   4560654.
  13. Surya, S. (July 2012). "Evidence for the continuum in 2D causal set quantum gravity". Classical and Quantum Gravity. 29 (13): 132001. arXiv: 1110.6244 . Bibcode:2012CQGra..29m2001S. doi:10.1088/0264-9381/29/13/132001. S2CID   118376808.

Further reading

Introduction and reviews
Foundations
PhD theses
Talks
Manifoldness
Geometry
Cosmological constant prediction
Lorentz and Poincaré invariance, phenomenology
Black hole entropy in causal set theory
Locality and quantum field theory
Causal set dynamics