Teleparallelism

Last updated

Teleparallelism (also called teleparallel gravity), was an attempt by Albert Einstein [1] to base a unified theory of electromagnetism and gravity on the mathematical structure of distant parallelism, also referred to as absolute or teleparallelism. In this theory, a spacetime is characterized by a curvature-free linear connection in conjunction with a metric tensor field, both defined in terms of a dynamical tetrad field.

Contents

Teleparallel spacetimes

The crucial new idea, for Einstein, was the introduction of a tetrad field, i.e., a set {X1, X2, X3, X4} of four vector fields defined on all of M such that for every pM the set {X1(p), X2(p), X3(p), X4(p)} is a basis of TpM, where TpM denotes the fiber over p of the tangent vector bundle TM. Hence, the four-dimensional spacetime manifold M must be a parallelizable manifold. The tetrad field was introduced to allow the distant comparison of the direction of tangent vectors at different points of the manifold, hence the name distant parallelism. His attempt failed because there was no Schwarzschild solution in his simplified field equation.

In fact, one can define the connection of the parallelization (also called the Weitzenböck connection) {Xi} to be the linear connection on M such that [2]

where vTpM and fi are (global) functions on M; thus fiXi is a global vector field on M. In other words, the coefficients of Weitzenböck connection with respect to {Xi} are all identically zero, implicitly defined by:

hence

for the connection coefficients (also called Weitzenböck coefficients) in this global basis. Here ωk is the dual global basis (or coframe) defined by ωi(Xj) = δi
j
.

This is what usually happens in Rn, in any affine space or Lie group (for example the 'curved' sphere S3 but 'Weitzenböck flat' manifold).

Using the transformation law of a connection, or equivalently the properties, we have the following result.

Proposition. In a natural basis, associated with local coordinates (U, xμ), i.e., in the holonomic frame μ, the (local) connection coefficients of the Weitzenböck connection are given by:

where Xi = hμ
i
μ
for i, μ = 1, 2,… n are the local expressions of a global object, that is, the given tetrad.

The Weitzenböck connection has vanishing curvature, but – in general – non-vanishing torsion.

Given the frame field {Xi}, one can also define a metric by conceiving of the frame field as an orthonormal vector field. One would then obtain a pseudo-Riemannian metric tensor field g of signature (3,1) by

where

The corresponding underlying spacetime is called, in this case, a Weitzenböck spacetime. [3]

It is worth noting to see that these 'parallel vector fields' give rise to the metric tensor as a byproduct.

New teleparallel gravity theory

New teleparallel gravity theory (or new general relativity) is a theory of gravitation on Weitzenböck spacetime, and attributes gravitation to the torsion tensor formed of the parallel vector fields.

In the new teleparallel gravity theory the fundamental assumptions are as follows:

  1. Underlying spacetime is the Weitzenböck spacetime, which has a quadruplet of parallel vector fields as the fundamental structure. These parallel vector fields give rise to the metric tensor as a by-product. All physical laws are expressed by equations that are covariant or form invariant under the group of general coordinate transformations.
  2. The equivalence principle is valid only in classical physics.
  3. Gravitational field equations are derivable from the action principle.
  4. The field equations are partial differential equations in the field variables of not higher than the second order.

In 1961 Christian Møller [4] revived Einstein's idea, and Pellegrini and Plebanski [5] found a Lagrangian formulation for absolute parallelism.

Møller tetrad theory of gravitation

In 1961, Møller [4] [6] showed that a tetrad description of gravitational fields allows a more rational treatment of the energy-momentum complex than in a theory based on the metric tensor alone. The advantage of using tetrads as gravitational variables was connected with the fact that this allowed to construct expressions for the energy-momentum complex which had more satisfactory transformation properties than in a purely metric formulation. In 2015, it was shown that the total energy of matter and gravitation is proportional to the Ricci scalar of three-space up to the linear order of perturbation. [7]

New translation teleparallel gauge theory of gravity

Independently in 1967, Hayashi and Nakano [8] revived Einstein's idea, and Pellegrini and Plebanski [5] started to formulate the gauge theory of the spacetime translation group.[ clarification needed ] Hayashi pointed out the connection between the gauge theory of the spacetime translation group and absolute parallelism. The first fiber bundle formulation was provided by Cho. [9] This model was later studied by Schweizer et al., [10] Nitsch and Hehl, Meyer;[ citation needed ] more recent advances can be found in Aldrovandi and Pereira, Gronwald, Itin, Maluf and da Rocha Neto, Münch, Obukhov and Pereira, and Schucking and Surowitz.[ citation needed ]

Nowadays, teleparallelism is studied purely as a theory of gravity [11] without trying to unify it with electromagnetism. In this theory, the gravitational field turns out to be fully represented by the translational gauge potential Baμ, as it should be for a gauge theory for the translation group.

If this choice is made, then there is no longer any Lorentz gauge symmetry because the internal Minkowski space fiber—over each point of the spacetime manifold—belongs to a fiber bundle with the Abelian group R4 as structure group. However, a translational gauge symmetry may be introduced thus: Instead of seeing tetrads as fundamental, we introduce a fundamental R4 translational gauge symmetry instead (which acts upon the internal Minkowski space fibers affinely so that this fiber is once again made local) with a connection B and a "coordinate field" x taking on values in the Minkowski space fiber.

More precisely, let π : MM be the Minkowski fiber bundle over the spacetime manifold M. For each point pM, the fiber Mp is an affine space. In a fiber chart (V, ψ), coordinates are usually denoted by ψ = (xμ, xa), where xμ are coordinates on spacetime manifold M, and xa are coordinates in the fiber Mp.

Using the abstract index notation, let a, b, c,… refer to Mp and μ, ν,… refer to the tangent bundle TM. In any particular gauge, the value of xa at the point p is given by the section

The covariant derivative

is defined with respect to the connection form B, a 1-form assuming values in the Lie algebra of the translational abelian group R4. Here, d is the exterior derivative of the ath component of x, which is a scalar field (so this isn't a pure abstract index notation). Under a gauge transformation by the translation field αa,

and

and so, the covariant derivative of xa = ξa(p) is gauge invariant. This is identified with the translational (co-)tetrad

which is a one-form which takes on values in the Lie algebra of the translational Abelian group R4, whence it is gauge invariant. [12] But what does this mean? xa = ξa(p) is a local section of the (pure translational) affine internal bundle MM, another important structure in addition to the translational gauge field Baμ. Geometrically, this field determines the origin of the affine spaces; it is known as Cartan’s radius vector. In the gauge-theoretic framework, the one-form

arises as the nonlinear translational gauge field with ξa interpreted as the Goldstone field describing the spontaneous breaking of the translational symmetry.

A crude analogy: Think of Mp as the computer screen and the internal displacement as the position of the mouse pointer. Think of a curved mousepad as spacetime and the position of the mouse as the position. Keeping the orientation of the mouse fixed, if we move the mouse about the curved mousepad, the position of the mouse pointer (internal displacement) also changes and this change is path dependent; i.e., it does not depend only upon the initial and final position of the mouse. The change in the internal displacement as we move the mouse about a closed path on the mousepad is the torsion.

Another crude analogy: Think of a crystal with line defects (edge dislocations and screw dislocations but not disclinations). The parallel transport of a point of M along a path is given by counting the number of (up/down, forward/backwards and left/right) crystal bonds transversed. The Burgers vector corresponds to the torsion. Disinclinations correspond to curvature, which is why they are neglected.

The torsion—that is, the translational field strength of Teleparallel Gravity (or the translational "curvature")—

is gauge invariant.

We can always choose the gauge where xa is zero everywhere, although Mp is an affine space and also a fiber; thus the origin must be defined on a point-by-point basis, which can be done arbitrarily. This leads us back to the theory where the tetrad is fundamental.

Teleparallelism refers to any theory of gravitation based upon this framework. There is a particular choice of the action that makes it exactly equivalent [9] to general relativity, but there are also other choices of the action which are not equivalent to general relativity. In some of these theories, there is no equivalence between inertial and gravitational masses. [13]

Unlike in general relativity, gravity is due not to the curvature of spacetime but to the torsion thereof.

Non-gravitational contexts

There exists a close analogy of geometry of spacetime with the structure of defects in crystal. [14] [15] Dislocations are represented by torsion, disclinations by curvature. These defects are not independent of each other. A dislocation is equivalent to a disclination-antidisclination pair, a disclination is equivalent to a string of dislocations. This is the basic reason why Einstein's theory based purely on curvature can be rewritten as a teleparallel theory based only on torsion. There exists, moreover, infinitely many ways of rewriting Einstein's theory, depending on how much of the curvature one wants to reexpress in terms of torsion, the teleparallel theory being merely one specific version of these. [16]

A further application of teleparallelism occurs in quantum field theory, namely, two-dimensional non-linear sigma models with target space on simple geometric manifolds, whose renormalization behavior is controlled by a Ricci flow, which includes torsion. This torsion modifies the Ricci tensor and hence leads to an infrared fixed point for the coupling, on account of teleparallelism ("geometrostasis"). [17]

See also

Related Research Articles

<span class="mw-page-title-main">Kaluza–Klein theory</span> Unified field theory

In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. In their setup, the vacuum has the usual 3 dimensions of space and one dimension of time but with another microscopic extra spatial dimension in the shape of a tiny circle. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

In the general theory of relativity, the Einstein field equations relate the geometry of spacetime to the distribution of matter within it.

In theoretical physics, the Einstein–Cartan theory, also known as the Einstein–Cartan–Sciama–Kibble theory, is a classical theory of gravitation, one of several alternatives to general relativity. The theory was first proposed by Élie Cartan in 1922.

In mathematics, the nonmetricity tensor in differential geometry is the covariant derivative of the metric tensor. It is therefore a tensor field of order three. It vanishes for the case of Riemannian geometry and can be used to study non-Riemannian spacetimes.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

In general relativity, the metric tensor is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

A frame field in general relativity is a set of four pointwise-orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime. The timelike unit vector field is often denoted by and the three spacelike unit vector fields by . All tensorial quantities defined on the manifold can be expressed using the frame field and its dual coframe field.

In the theory of general relativity, linearized gravity is the application of perturbation theory to the metric tensor that describes the geometry of spacetime. As a consequence, linearized gravity is an effective method for modeling the effects of gravity when the gravitational field is weak. The usage of linearized gravity is integral to the study of gravitational waves and weak-field gravitational lensing.

In differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.

In theoretical physics, massive gravity is a theory of gravity that modifies general relativity by endowing the graviton with a nonzero mass. In the classical theory, this means that gravitational waves obey a massive wave equation and hence travel at speeds below the speed of light.

In theoretical physics, a scalar–tensor theory is a field theory that includes both a scalar field and a tensor field to represent a certain interaction. For example, the Brans–Dicke theory of gravitation uses both a scalar field and a tensor field to mediate the gravitational interaction.

The tetrad formalism is an approach to general relativity that generalizes the choice of basis for the tangent bundle from a coordinate basis to the less restrictive choice of a local basis, i.e. a locally defined set of four linearly independent vector fields called a tetrad or vierbein. It is a special case of the more general idea of a vielbein formalism, which is set in (pseudo-)Riemannian geometry. This article as currently written makes frequent mention of general relativity; however, almost everything it says is equally applicable to (pseudo-)Riemannian manifolds in general, and even to spin manifolds. Most statements hold simply by substituting arbitrary for . In German, "vier" translates to "four", and "viel" to "many".

Newton–Cartan theory is a geometrical re-formulation, as well as a generalization, of Newtonian gravity first introduced by Élie Cartan and Kurt Friedrichs and later developed by Dautcourt, Dixon, Dombrowski and Horneffer, Ehlers, Havas, Künzle, Lottermoser, Trautman, and others. In this re-formulation, the structural similarities between Newton's theory and Albert Einstein's general theory of relativity are readily seen, and it has been used by Cartan and Friedrichs to give a rigorous formulation of the way in which Newtonian gravity can be seen as a specific limit of general relativity, and by Jürgen Ehlers to extend this correspondence to specific solutions of general relativity.

In quantum field theory, gauge gravitation theory is the effort to extend Yang–Mills theory, which provides a universal description of the fundamental interactions, to describe gravity.

<span class="mw-page-title-main">Gauge theory</span> Physical theory with fields invariant under the action of local "gauge" Lie groups

In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, do not change under local transformations according to certain smooth families of operations. Formally, the Lagrangian is invariant.

Gauge theory gravity (GTG) is a theory of gravitation cast in the mathematical language of geometric algebra. To those familiar with general relativity, it is highly reminiscent of the tetrad formalism although there are significant conceptual differences. Most notably, the background in GTG is flat, Minkowski spacetime. The equivalence principle is not assumed, but instead follows from the fact that the gauge covariant derivative is minimally coupled. As in general relativity, equations structurally identical to the Einstein field equations are derivable from a variational principle. A spin tensor can also be supported in a manner similar to Einstein–Cartan–Sciama–Kibble theory. GTG was first proposed by Lasenby, Doran, and Gull in 1998 as a fulfillment of partial results presented in 1993. The theory has not been widely adopted by the rest of the physics community, who have mostly opted for differential geometry approaches like that of the related gauge gravitation theory.

In comparison with General Relativity, dynamic variables of metric-affine gravitation theory are both a pseudo-Riemannian metric and a general linear connection on a world manifold . Metric-affine gravitation theory has been suggested as a natural generalization of Einstein–Cartan theory of gravity with torsion where a linear connection obeys the condition that a covariant derivative of a metric equals zero.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

References

  1. Einstein, Albert (1928). "Riemann-Geometrie mit Aufrechterhaltung des Begriffes des Fernparallelismus". Preussische Akademie der Wissenschaften, Phys.-math. Klasse, Sitzungsberichte. 1928: 217–221.
  2. Bishop, R. L.; Goldberg, S. I. (1968). Tensor Analysis on Manifolds . p.  223.
  3. "On the History of Unified Field Theories".
  4. 1 2 Møller, Christian (1961). "Conservation laws and absolute parallelism in general relativity". Mat. Fys. Dan. Vid. Selsk. 1 (10): 1–50.
  5. 1 2 Pellegrini, C.; Plebanski, J. (1963). "Tetrad fields and gravitational fields". Mat. Fys. SKR. Dan. Vid. Selsk. 2 (4): 1–39.
  6. Møller, Christian (1961). "Further remarks on the localization of the energy in the general theory of relativity". Ann. Phys. 12 (1): 118–133. Bibcode:1961AnPhy..12..118M. doi:10.1016/0003-4916(61)90148-8.
  7. Abedi, Habib; Salti, Mustafa (2015-07-31). "Multiple field modified gravity and localized energy in teleparallel framework". General Relativity and Gravitation. 47 (8): 93. Bibcode:2015GReGr..47...93A. doi:10.1007/s10714-015-1935-z. ISSN   0001-7701. S2CID   123324599.
  8. Hayashi, K.; Nakano, T. (1967). "Extended Translation Invariance and Associated Gauge Fields". Prog. Theor. Phys. 38 (2): 491–507. Bibcode:1967PThPh..38..491H. doi: 10.1143/ptp.38.491 .
  9. 1 2 Cho, Y.-M. (1976). "Einstein Lagrangian as the translational Yang–Mills Lagrangian". Physical Review D. 14 (10): 2521. Bibcode:1976PhRvD..14.2521C. doi:10.1103/physrevd.14.2521.
  10. Schweizer, M.; Straumann, N.; Wipf, A. (1980). "Postnewtonian generation of gravitational waves in a theory of gravity with torsion". Gen. Rel. Grav. 12 (11): 951–961. arXiv: 2305.01603 . Bibcode:1980GReGr..12..951S. doi:10.1007/bf00757366. S2CID   121759701.
  11. Arcos, H. I.; Pereira, J. G. (January 2005). "Torsion Gravity: a Reappraisal". Int. J. Mod. Phys. D. 13 (10): 2193–2240. arXiv: gr-qc/0501017 . Bibcode:2004IJMPD..13.2193A. doi:10.1142/S0218271804006462. S2CID   119540585.
  12. Hehl, F. W.; McCrea, J. D.; Mielke, E. W.; Ne’eman, Y. (1995). "Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance". Phys. Rep. 258 (1): 1–171. arXiv: gr-qc/9402012 . Bibcode:1995PhR...258....1H. doi:10.1016/0370-1573(94)00111-F. S2CID   119346282.
  13. Combi, L.; Romero, G.E. (2018). "Is teleparallel gravity really equivalent to general relativity?". Annalen der Physik. 530 (1): 1700175. arXiv: 1708.04569 . Bibcode:2018AnP...53000175C. doi:10.1002/andp.201700175. hdl: 11336/36421 . S2CID   119509267.
  14. Kleinert, Hagen (1989). Gauge Fields in Condensed Matter Vol II. pp. 743–1440.
  15. Kleinert, Hagen (2008). Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation (PDF). pp. 1–496. Bibcode:2008mfcm.book.....K.
  16. Kleinert, Hagen (2010). "New Gauge Symmetry in Gravity and the Evanescent Role of Torsion" (PDF). Electron. J. Theor. Phys. 24: 287–298. arXiv: 1005.1460 . Bibcode:2011pchm.conf..174K. doi:10.1142/9789814335614_0016. ISBN   978-981-4335-60-7. S2CID   17972657.
  17. Braaten, E.; Curtright, T. L.; Zachos, C. K. (1985). "Torsion and geometrostasis in nonlinear sigma models". Nuclear Physics B. 260 (3–4): 630. Bibcode:1985NuPhB.260..630B. doi:10.1016/0550-3213(85)90053-7.

Further reading